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Introduction

SCOLE stands for "Spacecraft Control Laboratory

Experiment". The objective of the SCOLE Program is to

provide an example configuration and control objectives

which enables direct comparison of different techniques in
modeling, systems identification and control. The "SCOLE

Design Challenge" was formulated in 1983 by L. W. Taylor and

A. V. Balakrishnan. The details of this challenge are reprinted
at the end of this document.

Annual SCOLE Workshops have been held for specialists

to share and compare their research results. This proceedings
is a compilation of the material presented at the 4th

Workshop held at the USAF Academy on November 16, 1987.
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INFINITE-DIMENSIONAL APPROACH TO SYSTEM IDENTIFICATION

OF SPACE CONTROL LABORATORY EXPERIMENT (SCOLE)

S. A. Hossain and K. Y. Lee

Department of Electrical Engineering

The Pennsylvania State University

University Park, Pennsylvania 16802

ABSTRACT

The identification of a unique set of system parameters in large space struc-

tures poses a significant new problem in control technology. This paper presents

an infinite-dimensional identification scheme to determine system parameters in

large flexible structures in space. The method retains the distributed nature of

the structure throughout the development of the algorithm and a finite-element

approximation is used only to implement the algorithm. This approach elimi-

nates many problems associated with model truncation used in other methods of

identification. The identification problem is formulated in Hilbert space and an

optimal control technique is used to minimize weighted least squares of error be-

tween the actual and the model data. A variational approach is used to solve the

problem. A costate equation, gradients of parameter variations and conditions for

optimal estimates are obtained. Computer simulation studies are conducted us-

ing a shuttle-attached antenna configuration, more popularly known as the Space

Control Laboratory Experiment (SCOLE) as an example. Numerical results show

a close match between the estimated and true values of the parameters.

17



DISTRIBUTED PARAMETER IDENTIFICATION

TWO APPROACHES "

FINITE-DIMESIONAL METHOD

I NF I N I TE-D I MENS I ONAL METHOD

18



Table 1

Literature Surveyed on the Parameter Estimation of Large Space Structures.

Reference

Wells and Spalding (1977)[2]

Tung (1981)[3]

Balas and Lilly (1981)[4 l

Balas (1981)[sl

Lee and Bitter (1981)[6 l

Banks (1982)[7]

Hendricks et al (1982)[8]

Hendricks et al (1984)[9]

Banks and Rosen (1984)[I01

Rajaram and Junkins (1985)[11]

Lee,Walkerand Uossain(1985)[12]

Lee (1986)[131

Spalding (1976)[141

Burns and Cliff (1977)f15 ]

Sun and Juang (1982)[161

Lee (1986)[13]

Approach

A finite-dimefisional design approach

where the structural model is trunc-

ated and the estimator is designed

based on the reduced-order model.

An infinite-dimensional design appr-

oach where the PDE model is retained

as long as possible and truncation is

carried out only after the estimation

algorithm is developed.

19
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A Distributed System Model

+ Do_-[(z,t)+ Aou(z,t) = F(z,t),

z E 12, t e (O,T],

Fib, t) = FBC_,t)+ _c(_,L)+ _'_(_,t),

M

_'o(_,t) = Bo/= Z b,(_):,(t),
i=l

N

,_(_,_) = B_ = _ b,(_)9,-(_),
i---1

y = Coy + Eout,

2J



Basic Problem Formulation

J(q)= _ (Y-z)rR(t)(Y-z) dr,

where z is the measurement of output vector y given as

z(x,t) = y(x,O + e(::,t)

with a measurement error e(z,t). AIso, it is defined that

(y- z)TR(t)(y - z)= / [y(z,t) - z(z,t)]TR(z,t)[y(z,t) - z(z,t)]dz,

22



- 7

Infinite-Dimensional Formulation

_u(t)_2 ÷ D(q)-_Ou(t)+ A(q)uCt) = B(q)l(t)

Ou

u e L2(0,T,V), 0t e L2(0,T,H),

in(O,T],

where f(t) is given in L2(O,T;V), and the initial conditions are

u(O) = uo, uo given in V,

and

a u(0) ul,
Ot

u t given in H.

The output function is

v(t)= c.(t),

The identification problem can now be formulated as an abstract problem of deter-

mining the parameter vector q'(z) E Q that minimizes

J(q) = _-_ [y(t) - z(t)] rR(t)[y(t) - z(t)l dr,

where z(t) is the observed data belonging to Y



Development of Infinite-Dimensional Identfication Algorithm

THEOREM : Given a state equation (18) with initial conditions given by Eq.' (1O) and

the cost function by Eq. (22) with y(t) satisfying Eq. (21), then the optimal parameter

vector q" satisfies the state equations (18)-(19) and the follwing system of equations :

d 2 d
TCrRfC_ ,_), (23)_p(t) - D"_p(t) + A'p(t) = -

with the final conditions

d

p(T) = -_p(T) = 0, (24)

and the first variation of an augmented cost functional is

6J. = pr (9 [D dU7; + Au- Bf] 6qdt=o, (25)

where p(t) is a costate variable also belonging to the Hilbert space V.

PROOF : By combining Eqs. (18) and (22) an augmented cost functional can be defined

as

1/)jo(q)= _ [y(t)- z(t)lTn(t)[y(t)-z(t)]dt

r Dd u
+ p(t) r u(t) + dt + Au(t) - Bf(t)] dt. (26)

24-



Parameter Identification of Vibrating Beams

Case I : A Simply-Supported Beam

a"-u a4u

pA-_. + EI--_z 4 = b(z)y(t), =e [O,L],t> o,

(9 2

_(x,t) = _=._(z,t) = o, =• 0{O,L], t > o,

° ,,(=,t)l,=o= o,,,(=,o)= _/ :,:• [o,LI

L,t).

z(t)=y(t)+e(t)

1 fors = _ [y_ ,]rR[y_ z]dt



m = 67 k_/m
El = 23000 N/m2

STEP LOAD

i-

Ca)

-1

0
I.-- I

z

(,,..

_°
Q..._.EE _..J tJ

tm U)---

! I I it!!

, i I

i _\__i
./t !\/

ii, i
i/;\

ik,_/! I"

Iil I

;/1"i, t/
,.Y I ;,\V

TIME (ms)

(6)

r:ig. 2 (a) Simply-supprted beam with step load,

(b) resultant displacements.

2G



or

02u EI 04u

al: m az 4 + ±6(_- _)I{0,
m

a2u a4u L

at 2 - -q,-_-_z4 + q:a(z- _)f(t),

where

EI
ql -- _,

1")2

°

q2 = _,
/72

and the parameter vector is defined by q = [ql,q2] T •

aZp a4p R z]6(z Late_- -q,-g-_+ ylu- - _), z E [0, L], t e [0, T),

a

p(z,T) = ._p(z,t)l,= T = o,

a 2

p(_,t): _-_p(_:,t):o, e a[o,Lt,t e [o,T).

and

6J: L r 02p 02u6q-_ = az 20z 2 dt,

6J_ L r L6q--_=- p_(x- _)I(t)_t.

Thus, parameters can be updated by the steepest descent algorithm

k

, i-- 1,2.
(6:o_

q_,+' : q_- w,__ /

27



Table 2

Performance Data for Case I

Iteration ql q_ m E1 f: error _"dt

1

2

3

4

5

6

7

301.58

311.68

325.65

338.48

342.11

342.96

343.19

0.0158

0.0154

0.0151

0.0149

0.0149

0.0149

0.0149

63.00

64.84

66.27

66.91

66.98

66.99

66.99

19000.00

20207.72

21582.87

22647.68 -

22913.64

22973.13

22989.35

0.20178E-01

0.16640E-01

0.71528E-02

0.57208E-03

0.34507E-04

0.26524E-04

0.24364E-04

True

values 343.28 0.0149 67.00 23000.00

:28



Case II : A Cantileverd Beam

a2u _ a3u a4u

m-fliT - 2 _ _/ m E l a z-_-_at + E I _-_z4 - b (x ) f ( t ) ,

=_ [o,L], t > o,

where _ is a damping coefficient.

y(t) =u(L,t).

The boundary conditions for a cantilevered beam are :

a2 ) x=ou(O,t) = b-_=_,,(=,t

_,,(=,t)lx= L 03= _-_=_,,(=, t) ,=L

=0,

= O,

t>O,

t>O.

The beam is initially at rest and hence the initial conditions are

0

,,(=,o)= _;"(=,t)l,=o

au(z,t) _=0 a2a_, . = _-fi2uCz,t)

= o,. =_ Io,Ll.

= o, =_ [o,L].
t=O

a2u cgZu 84u

at--T = q3 dz2a t ql _ + q26(z - L)f(t),

where

E1
ql = _,

m

1
q2 = _,

m

q3 = 2_f_,

and the parameter vector is defined by q = [ql, q2, q3] T



L

STEP LOAD

-f

m = 6?' k g/m
EI = 23000 N/m2
g = 0.I

(.)

oo

,,= ,,*,
,5= -=

tJ3 < ,"

t-_ tJ3,--

I

I _! il I iil,
' I I :

Ii, i : '

m

ii,i
b

I

TIME Cms)

I

2C_0

(b)

Fig. 3 (a) Cantilevered beam with a step load,

(b) resultant displacements.



Table 3

Performance Data for Case II

q2 q3 m El f: error dt
i

1

2

3

4

5

6

7

8

9

10

11

12

13

301.59

318.01

326.20

331.30

334.72

337.10

338.83

340.O7

340.96

341.56

342.06

342.44

342.73

0.0159 2.08 63.00

0.0155 2.76 64.50

0.0153 3.06 65.26

0.0152 3.23 65.73

0.015] 3.34 66.05

0.0151 3.43 66.27

0.0151 3.49 66.43

0.0150 3.53 66.55

0.0150 3.55 66.65

0.0150 3.56 66.71

0.0150 3.59 66.76

0.01497 3.62 66.80

0.01496 3.64 66.83

19000.00 0.060

20512.92 0.077

21286.34 0.085

21775.47 0.089

22107.25 0.091

22339.85 0.093

22510.09 0.095

22632.61 0.096

22721.78 0.096

22783.93 0.096

32'835.9@ 0.097

22874.19 0.098

22903.95 0.098

0.7843E-01

0.1664E-01

0.9432E-02

0.4498E-02

0.2284E-02

0.1238E-02

0.6649E-03

0.3796E-03

0.2199E-03

0.1519E-03

0.8667E-04

0.4961E-04

0.1165E-04

True

values 343.28 0.0149 3.70 67.00 23000.00 0.1

3]



Case III : A Simply-Supported Beam with Spatially Variable Parameter

aZu az( a2u)_K- + _:-Z. q(":) Oz---_. = b(z)f(O' .:e [O,L],t > o.

where q = EI(z).

c32p

Ot a

a _ / o2p'_ R
- -fl,,- zl, x e [o,LI, t e [o, T),

gJa(z) [r a2p a2u

Tq - ]o -g-_=_-g-_=_dt.



SECTION 1
STEP LOAD

2x

SECTION 2

I- L/2 =t-

SECTION 1
m = 67 kg/m

2E] = 23000 N/m

L/2 _I
--3

SECTION 2
m = 67 k g/m

E1 = 40000 N/= 2

(8)

,,=,
"'t

f.t} ...I ii
,,.,..,, ,_ L-
t-_ f..)_

m

z 0

W

..J I
,IC=
f.,.} --
f,,_ .-.

ii!!

vl\i
i

I I _ ; i ,

t) i ' /
! \j i _.Y. k,_/

25_ 5_2,

' i I
i,

I ' iI
"k _ ' $"x!

I

TIME {ill. )

(6)

_ I : _ t I t : ; I ' i i i I I

ilx -x iI i i i, ; : i ' _ ' _ i T

'\ /!\i 7"\, /: X! /' \ ;/ \ :1_ \
I\/ I k._,, ! .X,_Ji kYi \.i !\11 !k}

I

25_ 5e,_n _75o le_G_'

TIME (ll•)

Co)

Fig. 4 (a) Simply-supported beam with spatiallyvariable flexible rigidity,

(b) resultantdisplacements at LI4,

(c) resultantdisplcements at 3L14.



Table 4

Performance Data for Case III

Iteration q(sec. 1) q(sec. 2) jot error 2 dt

1

2

3

4

5

6

7

21000.00 39000.00 0.76863E-02

21686.15 39286.47 0.40601E-02

22261.30 39521.45 0.14636E-02

22630.66 39688.41 0.41442E-03

22814.49 39759.51 0.13629E-03

22911.04 39793.95 0.51151E-04

22968.10 39815.07 0.11209E-04

True

va.lues 23000.00 40000.00



ANTENNA
REFLECTOR

Z

SHUTTLE BODY J

PROOF-MASS
ACTUATOR

FLEXIBLE
MAST

PROOF-MASS
ACTUATOR
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controllaboratory experiment ( SCOLE }.
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The SCOLE Mathematical Model

A. Dynamic Equations

Roll Beam Bendinz Eql

a2u_

#A at 2

Lation in 7-z Plane

a4u_2 _,#_X_ + E I _ a._4

),( )= /_,_Ct)6(,-,_)+9_,_(t)o_(,-,_)

t>_0, -co<_<co, 0<_<:L.

Pitch Beam Bendin_ Equation in x-z Plane

• a2uo _ o3uo _. a4uo

p_ _ _ov p_,o o-_ + _Jo

4

t>0, -co<8<co, 0<_8,__<L.

Yaw Beam Torsion Equation for z-Axis

a2u,l, 0su_ a2u¢

4

: _ g_,.(t)6(,- ,_),
n=!

t_>0, -oo<s<co, 0_<_,,_<L.



B. Forcing Functions

The forcing functions on the right side of each equation are dependent on boundary

conditions and proof-mass actuators.

Forces at s = sl= 0 { shuttle body forces )

The forces at sz = 0 involves the shears at that point which are equal to the shuttle

mass ml times the corresponding component of acceleration.

CO=

f_,x(t) = -rnx_-_u¢(O,t),

O=

f,.l(O =

Forces at s = s4 = L ( reflector body forces )

092 cO=

fi,,4(t) = -m4"O-_ui,(L,t) - m4r=-_--_u¢(L,t) - F v,

cO= O=

[a,4(t) = -m4-_ua(n,t) + m4r_-_-_u¢(L,t) + F=,

where m4 is the reflector mass, (r=,rv) is center of reflector mass from the beam tip at

.s = L, and Fz and F_ are the applied forces at the center of the reflector mass.

Forces at s = s_ ( proof-mass actuator forces

cOs 02

f¢,2Ct) = -m+-_-_u_Cs:,t) + m2 _-_At,,: ,

O= 0 2

5,+(t) = 0 +

where A and m denote displacement and mass of the proof-mass actuator.

Forces at ,s = _s ( proof-mass actuator force )

02 cO2

.,+'÷,sCO= -m:__-_-,.,+(+,3, t) + ms_-+'_,:,,

cOs cO=



C. Moments

Moments at s = 0 (shuttlebody moments )

g÷,t /gs,1

g_o,t

= -[z,,b, + w, @z,_l + M,(t) + Mo(O,

where Iz isthe moment of inertiaof the shuttlebody, MI (t)and MD (t)are control and

disturbance moments, respectively,applied to the shuttlebody, and @ denotes the vector

product.

Moments at s = L ( reflectorbody moments )

I g_,4 I I "
ge,( =- I4_(

g@,(
a2(4+ ,,, ®],w, - M,(t) + ,.® r,(O -,',,,,'® _---_.

where Air(and F4 are the controlmoment and forceapplied at the reflectorcenter of the

mass and _4 isthe coordinates of the beam tip.

Also,/4 isthe moment of inertiaof the reflector,and I4 isthat with respectto the beam

tip given by

2 _r=rv 0 _)
rv 2 0

0 0 rz+r



Abstract Formulation of the SCOLE Problem

Mo_(t) + Aor(t) + BoF(t) + Ko(f'(t) _) = O,

where Mo isthe 17 × 17 matrix specifiedby

:c!

Z2

Z$

Z4

Z$

=a

s?

r-a

z_

Zlo

xll

s12

s13

z14

zi8

z16

zlT

zl _2

fvA o

0 pA
0 0

S3 Z4 _8

0

0

pA

0 m I

T._ Z7 Z$ ZO ZIO Zll J12 XI3 SI4

rr_ 0 0 0 0 0 0

0 m.4 0 0 0 0 0

0 0 0 0

o o z, o o
0 0 0 0

0 0 0 0 0

0 0 0 0 0 _'4

m_r, _m_rr 0 0 0

ff14 VI

-rn4 r_.
0

0

0

m,j
0

SI6

0

m5

Z|6

m,t

0

_17

0

ms
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Table 2

Performance Data for Case I } Nonlinear SCOLE Model

Iteration ql q2 m EI

I

f:error dt

"t

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

4.2353E+08 11.765

4.2531E-{-08 11.067

4.2612E+08 10.809

4.2743E+08 10.705

4.2704E-}-08 10.665

4.2617E-{-08 10.637

4.2508E-{-08 10.611

4.2390E÷08 10.589

4.2277E÷08 10.574

4.2174E-I-08 10.561

4.2072E÷08 10.546

4.1959E+08 10.525

4.1819E-{-08 10.495

4.1783E-}-08 10.471

0.0850

0.0904

0.0925

0.0934

0.0938

0.0940

0.0942

0.0944

0.0945

0.0947

0.0948

0.0950

0.0953

02955

3.6000E+07 0.1341F_,-04

3.8427E÷07 0.1896E-05

3.9422E+07 0.3038E--06

3.9929E+07 0.9131E-07

4.0041E+07 0.8031E-07

4.0064E+07 0.6646E-07

4.0059E+07 0.4938E--07

4.0029E+07 0.3237E-07

3.9982E+07 0.2032E-07

3.9934E+07 0.1465E,-07

3.9894E+07 0.1332E-07

3.9867E+07 0.1365E-07

3.9845E+07 0.1676E-07

3.9903E+07 0.7113E-08

True

values 4.1858E+08 10.465 0.0956 4.000OE÷07.00



Table 3

Performance Data for Case I :Linearized SCOLE Model

Iteration ql q2 m EI f:error 2 dt

1

2

3

4

5

6

7

8

9

I0

II

12

13

14

4.2353E+08 11.765

4.2531E+08 11.068

4.2613E+08 10.809

4.2744E+08 10.704

4.2705E+08 10.665

4.2618E+08 10.637

4.2509E+08 10.611

4.2392E+08 10.590

4.2277E+08 10.574

4.2175E+08 10.561

4.2066E+08 10.546

4.1957E+08 10.524

4.1816E+08 10.495

4.1773E+08 10.471

0.0850

0.0904

0.0925

0.0934

0.0938

0.0940

0.0942

0.0944

0.0945

0.0947

0.0948

0.0950

0.0953

0.O955

3.6000E+07 0.1341E-04

3.8427E+07 0.1894E-05

3.9422E+07 0.3051E-06

3.9929E+07 0.9142E-07

4.0041E+07 0.8040E-07

4.0064E+07 0.6660E-07

4.0060E+07 0.4955E-07

4.0030E+07 0.3255E-07

3.9982E+07 0.2032E-07

3.9933E+07 0.1478E-07

3.9888E+07 0.1378E-07

3.9,._67E+07 0.1361E-07

3.9846E+07 0.1667F_¢-07

3.9893E+07 0.8371E-08

4.1858E+08 10.465 0.0956 4.0000E+07.O0
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44



oa
o
!

w

..200

..,t o_
o_,,

o
|
m,

!

! it
L-2---- ;

I

I

TIME (ms)

o
I

iJ_! i I

TIME (m,)

!
W

"< (_I

0
|
G

- 0

J

i!

il
200

J !!,
i

i

I T" ,
I , ; I

[ I "I ' [

: I i l

400 680 8_

TIME (is)

000

Fig. 4 Roll, pitch _nd yaw displacement_ when a damping

Iact, or of 0.003 is added to the system.



ORIGJ,NAL PAGE IS

OF.POORQUALIFY

O
4,

uJ

..Jod

._jr3
C3o0
_- ,

0
I
c

:1 I! ,' ,;i

;Jl.I

_-_

i i t , :
i ! , : i

It!, ,i,,
4_'_ 600

f - j

,llq-
I'LL

8eta.

TIME Cms)

I
0 -_
0
4, I! i ll_i

: r

i
C , ! '

.7. 0 _

' _ i ._. " !.___ -_

, _I i I ,,' I

'.jir-_,,jt:_ i
:I ., ..4-i.

* i , ,

i
o _4_g ",."t:. 8 L,:'9 1___

TIME Cms)

0
I
w

_3

0
|
C

Fig. 6 Roll, pitch and yaw displacements when a force and a

moment are applied at the antenna-end of the beam.



Table 4

Performance Data for Case II

Iteration EI pA pI¢,

1 32000000.00 0.0750 1.1000

2 37582208.00 0.0881 0.9690

3 39607652.00 0.0928 0.9428

4 40157244.00 0.0941 0.9362

5 40372424.00 0.0946 0.9247

6 40338068.00 0.0945 0.9183

7 40309128.00 0.0945 0.9127

8 40282296.00 0.0943 0.9088

9 40260868.00 0.0943 0.9047

10 40243016.00 0.0942 0.9008

11 40226244.00 0.0942 0.8983

12 40202376.00 0.0942 0.8979

13 40181576.00 0.0942 0.8977

14 40162324.00 0.0941 0.8974

15 40149520.00 0.0941 0.8973

16 40140040.00 0.0941 0.8973

Wru_

values

0.00250

O.O025O

0.OO250

0.00250

0.00280

0.00288

0.00293

0.00289

0.00287

0.00285

0.00281

0.00286

0.00292

0.00299

0.00298

0.00295

40000000.00 0.0956 0.9089 0.003
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CONCLUSION

Infinite-dimensional identification method presented in this paper shows a significant

promise in the parameter estimation of flexible structures with great potentials for appli-

cations to LSS's. The basic approach is the abstract formultion of the system dynamics

in function spaces and then applying optimal control theory to adjust system parame-

ters so that the error between actual and model data is minimized. The use of partial

differential equation for the purpose of estimation elimainates many problems associated

with model trunction in the finite dimensional approach. Based on partial differential

equation models and a quadratic performance index an algorithm to estimate the opti-

mal parameters has been developed. The numerical results show the effectiveness of the

algorithm in estimating parameters of the flexible beam hu the SCOLE problem. The

results show fairly good match between the model and the estimated parameters. How-

ever, as the number of parameters to be identified increases it becomes increasingly time

consuming and difficult to solve. Also, due to model mismatch, slightly less accuracies

are expected if experimental measurem¢.:t data from physical beam were used.
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Abstract

We introduce a class of nonlinear damping models with application to flexible flight

structures characterized by low damping. We are able to obtain approximate solutions of

engineering interest for our model using the classical "averaging" technique of Krylov and
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1. Introduction

The problem of characterizing the damping mechanism in flexible structures has

received renewed attention in recent years in connection with the need to stabilize flexible

flight structures such as antennas deployed in space. The damping models even when

simplified to be linear appear to lead to rather complex mathematics if the structure is

described by partial differential equations and much progress has been made (the analyticity

of the generated semigroup has been shown to be essential). But experimental evidence as

in SCOLE [ 1 ] seems to support the need for nonlinear models -- the decrement is much

smaller than predicted by linear models. Some of the difficulty inherent in handling

nonlinear models is offset by the fact that damping, whatever its nature, is still small. This

opens up in particular the feasibility of obtaining approximate solutions using the classical

averaging method of Krylov-Bogoliubov [ 2].

In this paper we study a class of nonlinear models and approximate the response by

the Krylov-Bogoliubov technique. We use a modal expansion and neglect off-diagonal

terms. The emphasis is on useful engineering solutions rather than abstract mathematics.

We begin in Section 2 with the primary nonlinear damping model for the simplest

system -- the one-dimenisonal or single-mode case. We emphasize in particular one

feature that emerges, viz., the potential lack of identifiability from response data. In Section

3 we generalize to the multi- (non-finite-) dimensional case. In Section 4 we show the

relevance of the Krylov-Bogoliubov technique for approximating solutions to nonlinear

boundary feedback. We may mention that there is much work -- even classical in nature

-- on nonlinear oscillations such as the nonlinear pendulum where the spring constant is no

longer linear; however, relatively little attention appears to have been paid to the small

nonlinear damping term case.
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2. Single-mode Example

To illustrate ideas, let us begin with a one-dimensional

J((t) + ED(x, _) + O2x(t) = 0

where the dots indicate time-derivatives, as usual. We assume that:

D(x, Jc)k> 0

so that for E(t), the energy

we have

E(t) = _ (k(0 2 + 0.)2x(t) 2)

dE(t) = -eD(x, k)k < 0

satisfyingthe energy nonincreaserequirement.The particularchoice for

shall make is:

where

D(x,:t) = 2034± + _,x2mlxl= 5c(2n+I)_11_

m, n are nonnegative integers,

0 _< tx, 13 and 0 < ot+13 < 1; 0<4<1, 0<7<1.

(single-mode) example:

(2.1)

(2.2)

(2.3)

(2.4)

D(x, _) we

(2.5)

2_

1 I D(a sin _, at_ cos t_) cos t_ ddp (2.8)Ko(a) - 2re
o

da E
dt - co Ko(a) (2.7)

where

the period T = 2_o), According to the K-B approximation [2]"

where the amplitude function a(t) and the phase function ¢p(t) are slowly varying over

x(t) = a(t) sin (cot + _(t)) (2.6)

For small enough 8 we may apply the averaging method of Krylov-Bogoliubov [2, 5].

Thus, we write for the approximate solution:
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and

dt - toa Po(a) (2.9)

2_

Po.a.() - 2_1 _ D(a sin ¢, ao cos _) sin _ d¢
0

(2.1o)

Now we can readily calculate that for our choice, because of (2.2),

Po(a) = 0

Ko(a) 1= 2toga f tOCOS2_bdO
0

I+13 2m+2n+l+a+_ [__._+co 7a 2n 1f sin2mt_ Cos2n+2_ [sin ¢[a [cos 0l_ dO
0

2m+2n+ 1 +ot+l_
to2_a + a _/, to2 n+ 1 + 13

where

1
Ix - 2r_ f

0

27[

sin2mq cos2n_ C0S2(_ Isin *1a [cos 001g d_

and is a constant less than 1/2. Hence letting p = 2m + 2n, we have

da
-g(to_a + aP+l+a+J3to2n+l]_g)dt -

We may set e = 1 without loss of generality since we may absorb it into

Then

yielding

a(t) = a(O)e -t°_; [1
t_

a(t)

f
toga + aV+l+a+13to2"+13)'bt

a(0)

1

+ a(O)'+a+l_to 2n-1+13 ?(1-e-tC°;(P+ct+13))] -'+ct+g

We can readily verify that for _ = 0, we have

1

a(t) = a(O)[1 + a(O)P+a+[_to2n+_y_t(p + o_ + [3)t]-_

(2.11)

(2.12)

and y.

(2.13)

(2.14)

(2.15)
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The case y = 0 is evenmoreobvious.Onesalientfact that emergesimmediatelyfrom

(2.14)and(2.15)is thatit wouldbedifficult to resolvep + o_ + [3 into its components

from response data, unless we can change c0.

Note also from (2.15) that the rate of decay is not exponential in t and further the

decrement over any integral multiple of the period depends on the initial amplitude as well

as the frequency of oscillation. Finally for inegral k and

we have, taking logarithms and setting

log

For small

where

f2 k 1
a t.---_--- j

a(0) - -2rck_

2nk
t -

O

c=p+_+_

a(O)co)2n-l+f_TP" (1 - e )] (2.16)_ llog 1 + -27tk;c
c _ "

this is well approximated by

-2nk_ - llog(1 +2nk_,a(0) c)
6"

The slope (as a function of k)

_, = 0,)2n+[3-1 ,,tl.l,.

2nTVa(0)c (2.17)
= -2n_ c(1 + 2nkLa(0) c)

and hence the linear damping term is yielded by the asymptotic slope as k -_ ,_, while

for small k there is a marked curvature which depends also on the initial amplitude

a(0). The inital (at k = 0) slope

= -2n_ 2nLa(0)_ (2.18)
c

is larger (in absolute value). The second derivative being positive, the curve is convex

-- CUP. This is in excellent qualitative agreement with SCOLE damping data: see

Figure 1 where amplitude is plotted on logarithmic scale (period = 5 seconds).
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To get another version of (2.16) we may replace (2.7) by the more exact formula

a(t+T) - a(t) e Ko(a(t)) (2.19)
T = --_

and hence using

a k = a(kT) (2.20)

we would have

ET
ak+ 1 = a k - ---_ Ko(ak) (2.21)

so that

[ak+' l = [ eT" Ko(a___*).llog _ ak ) 1 Co ak )

which under our "small damping" assumption, may be replaced by

log --
ak+l eT Ko(ak)

= , (2.22)
a k O) a k

c 2n-l+_
= -e2_(_ + akyp.03 ). (2.23)

3. Multidimensional Generalization

Analogous entirely to the one-dimensional case, we may write the general nonlinear

dynamic equation for flexible structures [2] as

ME(t) + ])(x(t),J_(t)) + Ax(t) = 0 (3.1)

where the state x(t) ranges in a separable (real) Hilbert space _t; M is a self-

adjoint positive definite (with bounded inverse) operator on N onto _t; A is a self-

adjoint nonnegative definite closed linear operator with domain dense in _t and with

compact resolvent; we shall (for simplicity) assume that zero is in the resolvent set of

A. In the linear case

_)(x(t), _(t)) = Die(t) (3.2)

where D is also a self-adjoint normegative definite closed linear operator whose

domain includes that of q-A-. In the most important case we further specify that

6O
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D_k -- 2_kc0kM#k (3.3)

where

that

Here _k

{_k } are the M-orthonormalized eigenfunctions of A with eigenvalues co_ such

A_k -- ¢0_ M_k . (3.4)

is the damping ratio. If _k = _ and we have strict proportional damping --

see [3] for more -- D is then essentially the positive square root of A (except for M).

More generally we require that lim _k > _ > 0. In the nonlinear analogue of (2.5) we
k

set

j ;e k (3.5)

and more generally for x, y

2
Y. _2k b k

where

q k) = o

such that

h2a+2+213 2
+ _'_ a_ m+2a _'k _[k < -0 (3.6)

ak = [x, _k]; bk = [Y, _k] (3.7)

we define:
.2n+l

[_(x, y), _k] = _'k a2'' laklct t_k [bk113 + 2_kmkb k (3.8)

where, as before, m and n are nonnegative integers and that

0 < a, [3 < 1; a+_ < 1;

Note that

Hence if

[_(x,y), y] _ 0

1
E(t) = y {[Ax(t), x(t)] + [Mi(t), i(t)]}

ff-ftE(t) = -[_(x(t), i(t)), i(t))] < 0.

for every x and y.

we have that

Or, the energy is nonincreasing. Using the modal expansion

0 _< 7. (3.9)

(3.10)
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x(t) = Y, ak(t ) _k (3.11)

we see that for each k

h'k(t) + 02ak(t) + ak(t)2[ak(t)la_k(t)I/_k(t)l I_ + 2_k_k/_k(t) = 0. (3.12)

We can therefore invoke the K-B averaging procedure obtaining the approximate solution

ak(t ) = Ak(t ) sin ((okt + _k) (3.13)

Aj¢(t) -- Ak(0 ) e-t;kt°k {1

And for _k =0,

Ak(t ) = Ak(O ) (1

1

+ Ak(O)C%2n+13-I _'klX(I - e-t;k°_kc)-

I

+ Ak (0)c OJk"2 n + 13 _k _I,C tl - c

where, as before,

(3.14)

21t
1

tx - 2rt f sin2m¢ cos2n0 Isin t_l_t Icos ¢113cos2¢ d¢ . (3.15)
0

For ot + 13= 0, we can give a kernel representation. Thus

z = _(x, y) = E _ti _i[(_i , X] 2m [(_i, y]2n+1

where

y.?_ < o.; _,,>0;

and for the concrete realization /{ = L2(0, L), the corresponding "kernel" would be

W(s, (31 ..... (32m, s1 ..... S2n+ 1) = 2_ "_i f_i(S) (_i((31) "'" (_i((Y2m) (_i(s1) "'" Oi(S2n+ 1) (3.16)
i

and

L L

z<s =f ...f
0 0

W(s, (31 ..... (32m, Sl ..... S2n+l) x((31 ) x((32) "" x(t32m)

X y(s I ) "" Y(S2n + 1) d(31 do2 "" dc_2m d's1 "'" ds2n+ 1 "

(3.17)

A plausible model in this case would be to rewrite (3.1) as

MY(t) + _)(x(t), Dk(t)) + 2_Dk(t) + Ax(t) = 0. (3.18)

62
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which will satisfy (3.10), since the Yi in (3.16) are nonnegative. In the notation of

(3), the "roll" equations for example will have the form:

pA_o(t,s ) + Elcu,'"(t,s) - 2_/pAEI ¢ _3u,(t, s)
Ot 32s

L

0 0
W(s, a I ..... (Y2m, $1 ..... S2n+l ) x ut)(t , (_1) "'" uO(t, a2m)

O3uo(t, sl) O3ug(t, s2n+l)
x at a2s ot o2s dal "'" dazm dS1 "'" dszn+l

= O.

It is clear that we may generalize (3.17) without recourse to modes. The "nonlocal"

nature of the operator should hardly be surprising, since this is already so in the

linear case if we want strict proportionality (_k = 4) for example.

4. Application to Nonlinear Boundary Feedback

In this section we shall apply the K-B averaging technique to obtain approximate

solution to the response of a flexible structure to nonlinear boundary feedback control. The

control effort is small so that the K-B approximation is reasonable. We follow [4] for the

model where the "boundary" is finite-dimensional. Thus we have in the same setting as

Section 3, but omitting the natural damping term:

MJ((t) + Bf(B*Jc(t)) + Ax(t) = 0

where B means R" onto _( and f(.) maps R m into R"

[f(u), u] > 0

Using the modal expansion as in Section 3:

we obtain

x(t) = _. ak(t ) _k

i_(t) + O)_alc(t ) + [f(Y.g_j(t)b)), bk] = 0

and is such that

(4.1)

for u _: 0. (4.2)

(4.3)

g3
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where

B*t_k = b k .

Taking the approximation

we see that setting

[f(_ izj(t)bj), bk] = [f(ak(t)bk), bk]

a_(t) = Ak(t ) sin (Okt + t_k(t))

that

d_k(O = 0

Ko(Ak(t))
dAk(t =

O_k

where

2_1
Ko(a) - 2r_ f [f(a_ k cos _bk), bk] cos

0

To simplify matters further let us take

m = 1.

d_ °

Then

[f(ao3kb k cos _), b k] = bk f(abkco k cos _) .

We shall take:

f(u) = _tan -1 u

which is consistent with (4.2). Then (4.3) becomes

iik(t ) + O_2ak(t) + _1_ tan -1 hk(t ) = 0 (4.4)

Hence

1
Ko(a) - 2_ f

0

2_

_,bk tan -1 (abko) k cos @) cos _ d_

_21-2. 2 _Z. [,11 + . ":'k 1]
- 2o_k

Ak(t) dAk(t) _,

_2t.2. 2 ---- -- _ dt.[_/1 + ,, ok_, k - 1

To solve this, let

z(t) (4.5)
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so that

dz(t) = -b 2 _, dt . (4.6)
2( z'q_ - 1)

Let

q7 ('_z 1) , z > 1 . (4.7)F(z) = e -

Then

F'(z) > 0 for z> 1

and hence we may define the inverse function

F(z) = y ; = F -1z (y).

Thus (4.6) has the solution:

z(t) = F-l[F(z(O))e -b 2k_''] , (4.8)

2bk(okAk(t ) -- "_F-I(F(1 + Ak(O)2bk(ok)e - 1 (4.9)

where

z(0) = I + Ak(0)Zb_(o 2 > 1

unless Ak(0) = 0. Note that

F-l(y) _ 1 as y-_0

and hence z(t) decreases monotonically to 1 and hence the amplitude A_(t) decays to

zero asymptotically.

Note that the decay rate depends on the control effort hb 2 as well as the initial

amplitude. Of course we have in (4.4) yet another nonlinear damping model. Following

(2.22) we have:

where

222 ]log a)+l 2r_X [ N/1 + a}bk(ok - 1
aj - 2(o_k I, aj

a) = Ak(jT) ; T -
(Ok
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Equations of Motion

Shuttle (and Reflector) Body

Roll (and Pitch) Beam Bending

P 0dt2 ¢ds2dt dsd = 11fo,n6(s-sn)

Yaw Beam Torsion
+ g0.nd6(, )

ds -Sn

pl d%+el,d%_ol _2o)=_dt 2 )ds2dt *ds 2 = ig),n6 (S-Sn)

Beam Elongation

_z
- n6(s-s n)

dt 2 dsdt ds 2 = ,

70



Static Deflection Error

I 00[_

67 Modes
I 7, Error

I0 I00

Number of Modcs

!000

7/



:Large Amplitude Deflection Effects

Nonlinear/ ........" .....

............- Linear

Deflection, y/L Error, e/y

.05 .17 X

.10 .67 X

.20 2.7 X

.30 6.0 %

.40 10.6 X

.50 I 6.4 X

72



Lumped-Mass Model

• Exact Static Deflection

Approximates Low-Frequency Modes

• Nonlinear Kinematics

• Linearized State Space, Modal Model

• Classical Damping(Working Proportional)

• Extended to n-Body Network



V
Z

Beamj,i

Z

Lj,i

X
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Stiffness Matr

4El 2WL _

L 15
0

0
4El

L

m

m

0

0 6EI+W*

0

0

6El W*i._ ) 0 0

0 0 0

15

0

0

GJ
L

Gravity Effect
73=



Stiffness Matrices
...... u )I i, _ "....

12El 6W*

L 3 5L
0 0

Fu = 0

12El 6W*

L3 5L
0

Ft_=

0

6El 0
o i_

6El 0 0

0 0 0

0
EA
L

* Gravity Effect
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Motion Approaches Clamp-Clamped System
as Mode Number Increases

Accuracy Increases with
Mode Number

Increasing

Explicit Expressions

and Mode Shapes

for Modal Frequencies

First Variation Approximation
End Bodies

for Motion of

P Singular Perturbation Technique can be used
to Improve Appro×iv_ate Solutions
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I Comparison o[ Modal Frequencies I

EXACT FINITE ELEMENT

1 .278025624 .278 .277 .2740

2 .313776751 .317 .314

3 .812326353 .12b .6u_

37?9

.7494

4 1.18366347 1.226 1.175 1.244

5 2.05047101 2.069 2.028

6 4.75561758 4.77 4.617

2.052

7 5.51248431 5.52 5.388

8 12.2598619 12.4 11.782

9 12.8877037 13.0 12.513

I0 23.5359367 24.2 14.670

11 24.2568205 24.7 22.968

12 26.4794890 26.2 23.490

13 38.9199260

14 39.4643489

15 45.1313668

16 57.90

17 57.92

18 80.72

45.4 37.568

45.9 38.146

56.3 _ 44.653

N_5.161

19 80.72
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Comparison of Modal Frequencies

EXACT

MODE NO. REF.5&6

I .278025624

2 .313776751

3 .812326353

4 1.18366347

5 2.05047101

6 4.75561758

7 5.51248431

8 12.2598619

9 12.8877037

I0 23.5359367

II 24.2568205

Lumped Mpss Al_mototi¢

.258

.370

.926

2.57

4.23885_

I 4.23885

11.88805

11.88805

23_313674

23.313674

12 26.4794890

13 38.9199260

14 3_.4843489

15 45.131_68

16 57.90

17 57.92

8

18 80.72

19 80.72

• - Uncoupled (Reference 3).

j

38.534998

57.455629 /
57.455629

80.24802

80.24802
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I0

_XACT

ELONGATION

_ION

BENDINC,-

! I

Mode Number
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Coml_arison of Deflections

0
*I

i

_£FLECTOR

/

E)o_,C'T"

I

I SHUTTLE !

I I | | i , ,, J

2 3 m_ 3" 6 7Mode Nu bet
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A 3-Dimensional Beam Equation

• Includes Nonlinear Kinematics

• Makes No Small Angle Approximation

T(s)

dUy
x d

R(s)

ds

T(s+ds)

S

(s+ds)=R(s)* T(s)[I dux/ds ]duy/ds ds
+ d uz/d s

T(s+ds)=T(s) ÷ _/ds 0 -dO/d d

L-d Old s d _)/ds 0
Z

Y

1 Axes

X



it followsJhat the deflection vector of the bepm is:

[!uxt0s.1R(s) =;T,)o(s') I duz/ds'j°y/ds'ds'

and the direction cosine of the cross section axes is

given by:

I -d%/ds dO/dsJdT(s)_ T(s) d_/ds -d%/ds
ds L-dO/ds d_/ds

The forces and moments applied to the beam are

related to the beam deformations by:

dFx k'GA k ] [ dux/ds]
dFy - 'GA_ //duy/dS/
dFz = EA_E |/duz/ds|
dMx - lxx l/d_/ds ] ds

dMy -Elyy || dO/ds |
dMz -ElzzJ Ldl_/ds J

a_F= F_du * Fede
dM= Mudu + Mede

Where

du =|duy/dsJds de = /ds/ds

LdUz/dsJ _/dsJ
83



The incremental force can be related to delormation of

the beam.

OR [!1EO°x'O ld-_ = tis = T + T duy/ds
duz/ds

r du.,/ds7 r0_

tiuz/o s ds Ll_

dF F(s+ds)
ds F(s) ETTdR I!] de- u _-Fu +Fe_"

Similarly. for the incremental moment..

dM I!l °°dR _M u + Med--s + ds- MuTTd s

The equations o[ motion for the beam element are:

d2R_ d _dF]m_-{"2 -- T _-_ Lds
+ TF

and

d2e
Io_ 2 - de,dedEdM1H_ o_+_ T_ +M

_4



The equations of motion for the beam element become

md--_t= T_ { s
Or I: de-]
0[)+ eds_ JI

-+-TF

lod2e de de diM dR _0_)+ M d.._1_2 = - _ lo_-_ + _ u( TT 0 eas I

Where

e - the arc

de [d_/dt__-_ = dO/dt|
d_/dtJ

direction cosine[T]

N

dT _TCle
dt dt

N

dT _Tde

m - the mass per unit length

Io - the moment of inertia per unit length

F lxx -Ixy -lxz 1

- I-lxy lyy -ly [
L-lxz -ly z IzzJ

85"



For the case in which deIlections are small and the

end of the beam is aligned with the inertial axes-

°!]T_l+e- -d

d(l)

dux, ._ , c

dR_ T duy/ds + _ duv/ds +
duz/ds 1 duz/ds

The linearized equations become-

d2R _ d dR i )+ Fe_ss + F+eF
m h--_2 _ U(as i I

dR i de dR -(1)
d2e _ d ( ds I i d'_ + Fu( ds 1Ioa'_2 - _ u - [)+Me + F e d-:---e+M

(IS



For bending only, in a single plane the equations ol
motion become those for the Timoshenko beam.

m

d
kGA[ - 0 + F xas

d2O d [E dRx] d-_Rxlxx _ - d-s Ixx ds j - kGA[ ds -0)+ M x

If rotary inertia effects are neglected the result is the
Bernoulli-Euler beam.

d'I d'Rx7m d t2 -- ds-2 EIxx _ J + Fx

87



Kelvin-Voight Damping i

Bernoulli-Euler Beam Equation with Kelvin-Voight

Damping

Elu .... + C6 .... + m'd - 0

Allows Separalion of Variables

Theoretical Basis for Damping

Loc us of Modal Characteristics

jw

tit

I EXCESS I VEH I GH MODE
DAMP ING AT
NUMBERS !lip

8O

]



Bernoulli-Euler Beam Equation with Proportional
Damping

El .... Cfi" "" 0U + + mu--

Allows Separation of Variables for Pinned and

Infinite End Conditions

Lacks Theoretical Basis for Damping

Locus of Modal Characteristics
jill

tit
m

REASONABLE DAMP INC.--

HIGH MODE NUMBERS

89
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Piano-Wire Damping

J

Viscous Damping Ratio

Sinai ler Mass

Larger Mass

General Mass

.0015

.0013

OOi_i m

Nonlinear Damping

m_ = -c 1:_ = c2lxlx - kx

2
An, 1 = A n - An(.00138)2rr - (.0012)A n

Determined to be i

Air Damping i

9O
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Large

Amplitude

\
0 0 0

DD []

Small

Amplitude

/

5th Mode I

4th Mode l

Proportional Damping

(Constant Damping Ratio)

3rd Mode [

2nd Mode

list Mode_

fl

Imaginary

Part. jw

30

2fl

IU

fl
- .82

Real Part, O'



r

: SCOLE DAMPING' ............ .J

Viscous Damping Ratio

Mode Configuration # I Configuration #2

1 .0016 .0013

2 .0011 .0009

3 .00058

4 .00 I 1

5 .00084

Nonlinear Damping is Evident for

Large Amplitude Motion. Analysis

is Underway.

_2



Nonlinear Damping

Mass, Spring, Nonlinear Damper

m_ = -clxlal;_,l b_ - kx

Considering Only Light Damping ...

u) =_k/m

For Free Decay

x(t)= A(t) sin(wt)

c a b c wbAa+b= - _lxl I_1 - n,

Solving

dt
mdA

C wbA a+b

m

t .- t o - c (a+ b- l ) wbA a+b- l

A(t) = [c(a+b-

l

m )la+b il)wb( t * to



I

I 1A (n) -- u)bc(a+b- 1) n

1/2
Whefe t+t o = n 2---_ u) = [k/m]III '

(h-_ fi/9 1
m "_ _ a+-b-I

^ (_) = I
Lc (a+b- I )k(b-'3'2 2TrnJ

For Example

C •• --x a=b=0
m

Cl&l& a=O
m b=l

d A 2TI'_ = cTr
A =

dA 4cAw
-_-- 3m

4cAk 1/2

3m 3/2

I

a=l
Clxl& b=0
m
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r

Log Amplitude Nespoz_s<

)W

m

0

r

Linear Only
=_

'" ---.o,

Linear p lus"--

Quadratic - .....

200 400
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Interdependent Modal Characteristics
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0
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Concluding Remarks

The Accuracy of the Modal Characteristics of the

SCOLE Configuration were Examined Using Exact

and Approximate Solutions.

Sixty-Seven Modes are Required for a Static
Deflection Error of less than I Z, SCOLE Model

Requires Hundreds of Modes.

• Exact Solutions Encounter Numerical Difficulties.

Asymptotic Solutions in Combination with Limited
Exact Solutions Enable Generation of a Proof

Model with the Required Accuracy.

Damping Must be Incorporated into the Model

from the Start. Proportional Damping is Not

Adequate.

99
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"It will never be possible to have the absolute

conviction before flight that a valid mathematical

model has been devised for a space vehicle.

.... we surely must make every effort to ensure that

failures do not come from inadequate analysis of

the best models available."

Peter Lik ins

1971
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ADAPTIVE TECHNIQUES

INDIRECT
(STAC)

//
Lattice ETF H
Filters

I

\
,brid Variable

C,_,-,dzone

DIRECT
(MRAC)

I

/
Schedljlina "Cln_=ir_l "

(with MS)
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Direct Fixed-Order Compensator Design

MODEL

MODEL
REDUCTION

LOG

OPTIMAL
PROJECTION
EQUATIONS

OPTIMAL

LOG

CONTROLLER
3TIOM

SUBOPTIMAL
:)RDER

FEEDBACK
SUBOPTIMAL
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Given ...

]c = Ax + B u + W 1

y = Cx+w2 ,

... design an ntch order robust, zero set-point compensator

_ic = A_x + Fy

u = -Kxc

to nfininfize

J = lim -1 fo.(xT(t)Rlx(t)+ uT(t)R2u(t))dt
v--* oo 7"



LQG Solution

K -- R21BTp

F= QC V; _

A_ -- A - BK- FC ,

P and Q positive defiuite solutions to

PA + ATp + R1 -- PBR21BTp = 0

QA T + AQ + V1 - QcTvj -1CQ -- 0



0 = PA. + Arp + _ArpA,- prR_.Po + R,
i=l

+ _f_(Ai - Q.V_._Ci)rp(A, - Q.V2-._C,) + rTpBR_B rPri
/=1

0 = A.Q + O Ar + _A, QAr_ - Q.I_-._Q r + I_
i=l

P

+ _-_(A,- B,R_.Po)(_(A,- BiR_Ip.) T + r±QCrV2-_CQr r
i=1

PAQs + A_sP + pr R_I, Po - rr pBR;1B r Pr±

0 = ApsQ + OArs + Q. V-_°r2_̀. - rzQCrV2-_CQ rr
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Application to SCOLE

• Reflector Fanel

• Objective: Vibration Damping

• 3 inputs (reaction wheels at hub)

• 5 outputs (gyros at hub, accelerometers at reflector

center)

• 10 modes

i10



MEOP procedure

• Robustification with respect to modal frequencies

• Robustness measure: e

• Results:

Order

20

12

10

0.0138

0.0141

0.0153

(%)
-20 to +4

-30 to +20

-45 to +30

Cost

0.229

0.231

0.231

8 0.0140 -9 to +30 0.235

Optimal Projection Design

Order

2O

12

10

8

0.0148

0.0156

0.0154

0.0154

-25 to +40

-50 to +50

-50 to +50

-40 to +40

MEOP Designs

Cost

0.407

0.311

0.319

0.322

I]1
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Model Reference Adaptive Control (MRAC)

Procedure:

Find largest possible fanfily of adaptation laws assuring

stability, select specific adaptation law for particular ap-

plication.

Methods:

Hyperstability and Positivity Concepts



Control Approach

G
i

@
!

_. I_
I °_°__

-PL_MT

_7_w _I_ w .

PI Adaptive Model Following Feedback

II6



Control Objectives

ORI(]INALPAGEIS

• Control designed for first five modes

• 2-10°-/0 damping required

mode Frequency Desired

number Hertz Damping

1 .964 10%

" 2 .964 i0%

3 ",.1," 2% "

4 7.51 2%
5 9.6 2%

• Effects of actuator dynamics not included



Application to MiniMast

pt_G5 i_

OF pO0_

Mini Mast Modal Frequencies

nlode

number

1

2

3

4

5

6

Frequency
Hertz

.964

.964

7.17

7.51

9.6

9.8

Mode

Type

x-y

y°z

plate

torsion

y-z

X-Z

7 10.2 y - z

8 12.1 mix

9 16.08 mix

10 16.8 mix

number FEM

Point

1 334

2 336

3 33.5

4 337

5 338

Mini Mast Model Actuators

Actuator Cordinate Frame

Linear Actuator

Linear Actuator

Type X[Y

:i---6-

Linear Actuator ?i_

Linear Actuator ] 0 [ 1
Reaction Wheel 0 0

Z

0

Force

Limitations

30 newtons

0 30 newtons

0 30 newtons

0 30 newtons

1 Rot 50 Ft. lb.
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Mode 2 Position

-.1

J

_j q----"

is. e.s 1.e 1.s e.e e.l; 3.e 3.s 4.e 4.s s.e

Second:_

Mode 2 Reference Error

I /!//
i.I"  lVVlVVlVVV

4. I).S 1.8 1 .S 2.0 2.S 3.8 3.5 4.0 4.S S.8

Seconds
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B.

-.I
d.

_VYV_vvvv,
O.S 1.O

8.1R

0,0

-.82
4.

Mode

Mode 5 Position

_f,.^,', _^^^_^A,^,!^^ ....................

VVVV'vvvv wvv,v.._ ...................

1 .S Z.O e.S 3.e 3._ 4.e 4.s

Second:s

5 Reference Error

S.8

8.S 1.ll t .!; 2.8 2.S 3.e 3.S 4.B 4.'3 S.8

Seconds

,

d. 0.5 1 .O

8.S
Mode

Mode 2 Velocity

1 .S e.15 i_.S 3.8 3.S 4.8 4.5

Seconds

2 Reference Error

S.e

' ""_ VV YV,,'v' ^- v

-.S
d. O.S 1.0 1.S i_.e 2.5 3.8

Seoonds
3.5 4.0 4.5 S._
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Outlook

• Effects of Actuator Dynanfics

. R_fi._.me.t of STAC

• System Identification

• Experimentation
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Abstract

Large space structural systems, due to their inherent flexibility

and low mass to area ratio, are represented by large dimensional mathe-

matical models. For implementation of the control laws for such systems

a finite amount of time is required to evaluate the control signals; and

this time delay may cause instability in the closed loop ccntrol system

that was previously designed without taking the input delay into ccn-

sideration. The stability analysis of a simple harmonic oscillator

representing the equation of a single mode as a functicn of delay time

is analyzed analytically and verified numerically. The effect of in-

b_rent damping cn the delay is also analyzed. The control problem with

delayed input is also formulated in the discrete time dc_a/n.

I. Introduction

Large flexible space structures have been proposed for possible use

in cc_rmmicaticns ,electronic orbital based mail systems, and solar
energy collection. ±,z The size and the low mass to area ratio of such

systems warrant the ccnsideraticn of the flexibility as the main contri-

bution to the dynamics and control problem as cc_pared to the inherently

rigid nature of earlier spacecraft systems. For such large flexible sys-

tems, both orientation and surface shape control may often be required.

The equations of motion describing the shape of any large space

structure are either represented by a few partial differential equations

or a large number of ordinary differential equations. As the partial

differential equations are difficult to solve for control system design

purposes, the structural dynamics are conr_nly described using Finite

El_t M_thods (F_4). Two typical large space structures namely the

Hoop/Colunn antenna 3 and the Space Station initial operational configura-

tion (IOC)4 are both described using 672 degrees of freedcm. Thus the

dynamics of a large space structure can be written as5:

M Z + K Z = U c (i)
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where
M=NXN

K=NXN

mass/inertia symmetric matrix

stiffness synm_tric matrix

Z=NXI generalize coordinates representing the degrees

of freedcm

Uc= influence of the external forces in each degree of

freedc[n = B'U.

With the modal transformation

Z=%q

and the properties of the modal transformation such as

= T
2

,TK, = diag [_ _ .... , _n ]

and neglecting the higher modes, equation (i) can be written in standard

state space form as

X=AX+ BU

wlhere

X = 2nxl state vector representing modal coordinates

and their velocities [q. _]T

(2)

U = mxl control vector

[ ]PI
0 I nxn

A = 2 J system matrix

-_i I 0
21

!

S [° 1%TB 'nxm

control influence matrix

II. Ccntrol with Delayed Input

The proposed control systems for large space structures are based

on state variable feedback of the form:

U = -FX (3)
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and the control gain matrix, F, is designed using techniques such as the
linear quadratic regulator (LQR) theory °, pole placement_, and/or linear
quadratic Gaussian/loop transfer recovery (LQG/LTR).8

For the case when the^complete state is not available for feedback,
an estimate of the state, X, is obtained using an appropriate estimator
from the measurementsof the form

_= 6X (4)

where

Y = _xl measurementvector

C = _xn sensor influence matrix
^

In general, it is assumed that the estimated state, X, is instanta-

neously available. As the state estimator is implemented using a

digital computer and the number of the status (2n) is of the order of

hundreds for a large space structure, the computational time becomes

appreciable. Thus, in the present paper, the stability of the closed

loop control system, with the control as given in equation (2), is

analyzed as a function of the delay time (h) using the modified control
law of the form:

u(t) = -FX(t-h) (5)

The characteristic equation of the closed loop system

i = AX(t) -BFX(t-h) (6)

is given by

G(s,h) = det (sI-A+BFe -sh) = 0 (7)

which, in turn, can be written as

Pi(s)e -shiG(s,h) = 2n = 0. (8)
E

i=0

The roots of the characteristic equation, (8), as a function of the delay,

h, are obtained from the corresponding auxiliary equation 9

2n

Pi(s)(l-Ts) 2i (l+Ts) 4n-2i = 0 (9)G' (s,h) E

i=0

where
-sh 1-sT 2

e = [ ] (I0)
l+sT
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The value of T for which the roots of the equaticn (9) cross the
imaginary axis in the s-plane is obtained and the correspcnding h is

evaluated using the relaticn, (i0).

III. Exan_le of a Harmc_ic Oscillator

The equation of motion representing the ith structural mode is

the familiar_c oscillator and is given by

°°

xi + 2. xi = f.1 l

Considering the delayed velocity feedback of the form

with

fi = -2_i_i_i (t-h)

_i = 6, _i = 0.5,

the characteristic equation is given by

G(s,h) = s2+36+6se -sh = 0

1

= i_ 0 Pi(s)e'shi = 0

where

Po(S) = s2 + 36

Pl(S) = 6s

The correspmnding auxilary equation is given by

(ii)

(12)

(13)

1
2i

7 Pi (s) (I-Ts)
i=0

2-2i
(I+TS) = 0

i.e. (s2+36) (l+Ts) 2 +6s(l-Ts) 2 = 0

or T2s 4 + (2T + 6T 2) s3+(l+36_-12T) s2

+ (72T+6)s+36 = 0

(14)

(i5)

using the Routh-Hurwitz criterion, it can be found that the roots of

equation (15) cross the imaginary axis at m -" 9.7 for T --"0.0426.

The corresponding delay (h) can be calculated from the relaticn (i0)

with s = j_ and is 0.16. This result can also be verified directly

for this simple system with the substitution s=jm into equation (13) 10

resulting in t_he value of _ and delay h for which the roots of the

characteristic equation cross the imaginary axis.
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Thus, equation (13) can be written as (keeping _i and mi):

(wi2-_2) + j(2_iwi_)e-J_h = 0 (16)

or

2 2+2_iwi _(wi -_ sinmh) + J2_imim coswh = 0 . (17)

For equation (17) to be satisfied

cos mh = 0 or mh = _/2 (18)

and

or

2 2

w i -m +2_i_i_ = 0 (19)

= Ci_i _ mi / l+Ci2

Taking the positive value for m, the delay h, is given by

_/2
h = . (20)

.+ / i+_i2 ]

The value of h for _il =t 0.5 and _.i = 6 is 0.16 and thus the earlierresult is verified, is observed that an increase in damping reduces

the tolerable delay (h) in the input.

The equation of motion of a single mode with inherent (natural)

damping and velocity feedback can be written as:

"" ° 2

X+2 __wiXq_0 i X = f = -2_imiX(t-h) (21)

where _i' is the inherent damping ratio

The corresponding characteristic equation is given by

s2+2_is+_i2+2_imise-Sh = 0. (22)

After substituting s = jm, equation (22) can be written as:

2
(_i -_2+2_i_iw sin_h) + j(2_i_i_+2_i_iwcos_h ) = 0 (23)

For equation (23) to be satisfied for all m and h, we have

!

2_i_i+2_iwi cosmh = 0 (24)

or
!

cos mh = -_i/_

i

(25)
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Thus, for cos_h = < i, the inherent damping must be less than damping due
• ' the system will always be stable.to control for instability. For _i<_i ,

With the value of mh from equation (25) the frequency m can be

calculated as:

w = mi [_E2_'2 _ / i+_2 -E'2 ] (26)
i i i i

and selecting the positive value of m, h is given by:

-i
cos (-_I_±)

h

mi[# _'2 S _ i+_$_'2 (27)
ii ii

For _i = _' it can be seen that the delay, h, is half the undamped
natural period of vibration. As the damping due to control increases,

the tolerable delay (h) decreases and is in accordance with the observa-

tion made in the case without the inherent damping. The effect of inher-

ent damping in the system is to increase the amount of delay that the

system can tolerate without become unstable as compared to the case

without damping

IV. Discrete Time Domain

As the controller is implemented on a digital computer, it may be

more natural to consider the delayed input problem in the discrete time

domain.

The equations of motion as given by equation (2) can be written in

the discrete time domain as

X(i+l) = AdX(i)+BdU(i)
(28)

where

A_ g t-g)
/ eA( B dt

Ad = e , Bd =
o

A = discretization time.

The delayed input problem can be considered in discrete time in one of

the two following ways:

i) Designing the controller of the form U = -FX(i) without taking

into consideration the delay and then examining the effect

of delay on the stability of the closed-loop control system.

The control gain matrix F is designed such that the matrix (Ad-BdF)

has the eigenvalues within the unit circle. Then the delay is introduced

into the control law as:

J29
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U(i) = - FX(i-Z) (29)

and

X(i+l) = AdX(i)-BdFX(i-£) . (30)

The stability of equation (30) can be studied using the augmented system

given by

or

x(i+l)

x(i)

X(i-_+l 0

D

A d

I

7
0 0 0 -BdF

0 0 0 0 J

{
0 0 I 0]

qj

Z (i+l) A d

Z (i+l) = AdZ(i) (25)

(ii)

X(i)

X(i-l)

X(i-_)_

%

z(i)

Designing the control by taking into account the delay in
the input. 6,11

(31)

Equation (28) can be modified as :

X(i+l) = AdX(i ) + BdU(i-_ )

The control law of the form U(i) = -FZ(i) can be designed from the

augmented system:

(32)

"X(i+l)

u(i)

U(i i)

U(i-_+l_

"A d 0 0 0 Bd-

0 0 0 0

I 0 0 0

-- 0

0

0 0 0 I O

X(i)

U(i-1)

U (i-_)

qJ

z(i)

+ II
I

0 1

ol

u(i)

(33)

or
q_ _ qJ

Z(i+l) = AdZ(i ) + BdU(i )
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Thus the input U(i-_) is a function of the previous inputs, U(i-_-l),

U(i-_-2),..., and the previous states X(i-_). Though this design can

take delay into consideration, the sequence of the control signals:

U(i-_), U(i-_+l),... must be generated at an interval of one step and,

thus, the original delay problem is not completely solved.

Conclusions

The effect of delay in the input on the stability of the continuous

time controller that is designed without taking this delay into consider-

ation is presented. The closed-loop control system of a second order

plant becomes unstable for a delay of 0.16 seconds, which is only 16 per-

cent of its natural period of motion. It is also observed that even a

small amount of inherent (natural) damping in the system can increase the

amount of delay that can be tolerated without the system becoming unsta-

ble. The delay problem is formulated in the discrete time domain and an

analysis procedure is suggested.

l.

2.

.

4.

.

.
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Abstract

The minimum time attitude slewing motion of a

rigid spacecraft with its controls provided by

torques and forces, which have their upper and low-

er limits prescribed, is considered. The two-point

boundary-value problem is derived by applying the

Pontryagin's Maximum Principle to the system and

solved by using a quasilinearization algorithm.

The nominal solutions to the problem as well as

the starting values of the total slewing time and

the unknown initial costates for this algorithm

are generated by using Euler's eigenaxis rotation

theorem. It is pointed out that one of the four

initial costates associated with the quaternions

can be arbitrarily selected without affecting the

optimal controls and, thus, simplifying the compu-

tation. The minimum slewing time is determined by

shortening the total slewing time until at least

one of the controls becomes a bang-bang type.

Several numerical tests for the rigldized SCOLE

model are presented to show the applications of

the methods.

I. Introduction

The problems of large-angle attitude maneuvers

of a spacecraft have gained much consideration in

recent years. I-8 In these papers, the con-

figurations of the spacecraft considered are:

(1) completely rigid, (2) a combination of rigid

and flexible parts, or (3) gyrostat-type systems.

The performance indices usually include minimum

torque integration, power criterion, and frequency-

shaped cost functionals, etc. Also some of these

papers used feedback control techniques. In this

paper, we try to concentrate on the minimum time

slewing problem of a rigid spacecraft.

In Ref. 2 , the author studied the rapid

torque-limited slewing of SCOLE about a single

axis (x-axis) about which the spacecraft has a

small moment of inertia. The control torque about

this axis is of a bang-bang type or a bang-pause-

bang type. The author computed the slewing motion

on the simplified model of the rigidized SCOLE j,

then worked on the practical rigidized model (with

nonzero products of inertia); hence, this leads

to a large error of the attitude after the slewing.

Also it seems that no details were given for the

controls about the other two axes (y, z).

In the present paper, we apply optimal control

theory (Maximum Principle) to the slewing motion

of a general rigid spacecraft (include the rigid-

ized SCOLE, without simplification). The slewing

motion need not be restricted to a single-axis

slewing. The attitude error at the end of the

slewing can be made as small as required.

*Research supported by NASA Grant NSG-1414
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All the controls (torques and forces) are computed

and the minimum slewing tlme is found by using the

quasilinearization algorithm for the resulting two-

point-boundary-value problem.

2. Attitude Description and State Equations

2.1 Attitude Description and Euler Rotation

Let a = [al a2 _]T represent a set of unit,

ortho__qonal vect6rs_of'an inertial reference system,
and b : [_I _p _] a set of unit, orthogonal vec-

tors of a _od_-flxed coordinate system of a space-

craft. Then, the attitude of the spacecraft rela-

tive toa can be described by a direction cosine

matrix C with c Bat_sfylng the relation

and

6-C_ (1)

2(qiQ3-qoqz)l

2(q2q3+qoql) |

_2+n2 _2 _2 /
"0 _3""I-_2 J

2 2 2 2

qo+ql-qz-q3 2(qlq2+qoq 3)

c: 2(qlq2-qoq3)
2(qlq3+qoq 2) 2(q2q3-qoq I )

(2)

where q = [qo ql q2 qq]T is the attitude quaternion
vector and subject toga constraint equation

qTq : 1 (3)

It can be seen that q can be used not only to

represent an attitude orientation of a spacecraft,

but also to describe a rotation of a rigid body

(spacecraft). For example, when a rigid spacecraft

rotates about an axis defined by a unit vector

{ =_c I c_ ¢_]T fixed in both_ and _, the quaternion

describihg _his rotation is

qo : cos (e/2), qi : ¢i sin (8/2) i : 1,2,3 (4)

where e is the rotation angle.

The Euler rotation theorem tells us that an

arbitrary orientation of a rigid body can be accom-

plished by rotating it about a certain eigenaxis,

= [_I e2 E3]T, through e angle from its initialc

positi6n. By means of this theorem we can find

the desired rotation quaternion, q, between the

initial position q(O) and the final orientation

"q20 "q30

-q30 q20

q20 q30

q30 -q20

qo0 qlO

"qlO qo0

qof

qlf

q2f

q3f

(s)

q(tf) by the relation

qo qo0 qlo

ql . -qlO qo0

q2

q3

where the second subscript "0" and "f" represent

the initial time and final time, respectively. •
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The associated ¢ and e can be obtained by the
followlng relations

e - 2 arc cos qo ' el " qt/V-T_ ' i " 1,2,3
(6)

2.2 Kinematical and Dynamical Equations

The attitude quaternion and the angular velo-
city of a rigid spacecraft satisfy the following
kinematical and Euler dynamical equations.

q = (I/2) __q (7)

I _ =,.,I w + B u (8)

where

_ angular velocity vector in the body system,

w " [w1_2_3 ]T

u control torque and force vector,

"-I _atu'u_u" . . . unJT"u

and

I I

0 -wI -w2 -_

wI 0 w3 -w2

w2 -w3 0 Wl

w3 w2 -_I 0

I lll "I12 "I13

112 122 -123

In3 -123 133

o]
-w2

" "_3 0mu I

• _2 -=I

and B is a 3xn alignment (control influence)
matrix. Eq. (8) can be rewritten, by pre-

multiplying by the inverse of I, as

_- I-I w I ,.,+ I"l B u (9)

The associated initial and terminal boundary
conditions of the states, q, _, are prescribed:

q(t-O), _(t:O); q(tf), _(tf) (I0)

3. Optimal Control - Two Point

Boundar_ Value Problem

In this paper, we try to minimize the slewing

time tf,

tf = /tf dt (II)
0

under the constraints that the elements of the

control vector u have their upper and lower limits,
respectively

Ujmin _ uj _ Ujmax, j = 1,2,3 ..... n (12)

Generally speaking, minimization of tf under
the constraints (12) will result in a so-called
two-point boundary-value problem in which several
controls Cat least one) will reach their bounds

during the slewing time, tf. To explain this
point, let us first consider a well-known special

case where there are only 3 control torques, Ul,
u2, u3, about the 3 principal axes of the space-
craft, respectively (i.e. diagonal matrix I).

For thls case the minimum time rotation of the

spacecraft about one of its princlpal axes will
yield the following results: the control torque
about thls axis is of a bang-bang type, while the
other two torques remain zero. Otherwise, if the
slewing motion is not about a principal axis, none
of the 3 controls remain zero, but we can reason
that at least one of the 3 control inputs reaches
its bounds, except some jumps at the switching

points during the period, tf. As for a general
case where the control torques are about a body
axes system which does not coincide with the prin-

cipal axes (non-diagonal I) and some additional
control forces, u4, us, u_, are available

"''' II

the control laws 6ec_e more complicated.

To handle the problem in which some controls
reach their bounds and others do not, we introduce
an additional cost function

1
j . 2" /tf uTRu dt {13)

0

where u Is the control vector• R is a proper
weighting matrix. From Refs. 3 and 8 , we
can see that, for the case of rest-to-rest {i.e.

.(0) - O, w{tf) • O)slewing with only 3 control
inputs involved, if we use only {13) as a criterion

and tf Is long.enough, the control torques are
approximately m_near functions of time, and the con-
trols will not reach their saturation levels. But

if we shorten t_ in order to find a minimum time,
some of the controls must reach their bounds and,
thus_ contribute more effort to the slewing. By
contlnuing the.shortening of tf, we can get a parti-
cular value, tc, during which at least one of the
controls remaiAs as bang-bang with one switching
point, while others are generally not of the bang-

bang type. This value, t_, is called the minimum
time which is required.

The motivations for using (13) as our cost
function are:

l) Ease of using the quasilinearization
algorithm

2) No need to determine the switching points.

3) Easy to guess the unknown initial values
of the costates.

3.1 Necessary Conditions

The Hamilton,an. H, for the system (7), (9)
and (13) is

H = (I/2)uTRu + pT_ + rT_

= (I/2)uTRu + (I/2)pT_q + rT(l-l_I_+I-IB u)
- (14)

where p and r are costate vectors associated with
q and w,

P = [Po Pl P2 P3]T' r = [rI r2 r3]T.

By means of the maximum principle, the nec-
essary conditions for minimizing J, are

= - (_H/_q) , ==> p = (I/2) _ p (15)

= - (_H/)_) , ==> _ = g(=,r) + (I/2)[q]p
(16)



where g(_,r) is a 3xl vector functlo,l of _ and r,
and the detailed form of g(w,r5 can be found in

Appendix I; [q] is a 3x4 matrix

[q] = q2 q3 -qo -ql

q3 -q2 ql "qo

The initial values of p, r are unknown, p(t=O),

r(t=O).

If u is a 3xl control torque vector and B is

a 3x3 nonsingular matrix, R can be a positive-

definite matrix defined by

R = BTB (17)

From

aH :0,
_u

_" R u + B T I"l r = 0

or u - - R-I BT I-l r

: - B-l I"l r (18)

we have g

Ujmin, if uj < Ujmin;
uj = -(B "l I"l rSj, if Ujmin Suj S Ujmax ;

Ujmax' if uj > Ujmax"

j : I,z,3. (ig)

If u is an nxl (n>3) vector, B is a 3xnmatrix,

the R formed by (17) is a semi-posltive-definite

matrix. To circumvent the singularity of R, we

introduce a 3)I vector, v,

v = B u (20)

Then
(_H/_v) = O, ==> v - -I-Ir (215

By means of pseudo-inverse of matrix B, B +, we can

get u
u = B + v = BT(BBT) -l v

= _ BT(BBT)-I(I-Ir) (22)

The control laws are

uj=
i Ujmin , if uj < uj min;

-(B + I"l rSj, if Ujmin _ uj SUjmax;

Ujmax, if uj > Ujmax"

j - 1,2..... n. (23)

Note that Eq. (235 is reduced to Eq. (19) if B "l

exists.

In summary, we seek the function q(t), w(t),

u(t), p(t), and r(t) which satisfy the equations

(75, (gS, (15-16), (237 subject to the boundary

conditions (lO).

3.?__l], r:,.rties of tle Tqitia! "a]ueL of __

The key to settle this problem is to find the

unknown initial values of the costates

p(O) = [ P00 Pl0 P20 P30 ]T and

r(O) = [rl0 r20 r30]T

Notice that the coefficient matrix of the right side

of Eq. (15) is anti-symmetrlc, so,

pT_ , 0 i.e. pTp = constant

The extra constant is usually treated as an unknown

and is determined by iteration. This results in

more computational effort. However, as we shall

prove, this unknown constant can be arbitrarily 8
selected without changes in the optimal controls.

Compare Eqs. (7) and (15), they have the same

coefficient matrix on the right sides. Therefore,

they have the same state transition matrix. Let

Q represent this 4x4 matrix, then the q and p at

any instant can be obtained by

q = Q q(0), p = Qp(O) (24)

We know that Q satisfies the following matrix dif-

ferential equation

= (i/2)__Q (2s)

Ref. I0 shows that Q, the solution of (255, has

the form

Q =

qll "ql2 "q13 -ql4

q12 qll ql4 -ql3

ql3 "ql4 qll q12

ql4 q13 "q12 qll

(26)

On substituting Eq. (26) into Eq. (255 we can

verify that only 4 of the 16 q|i are independent.
We rewrite and rearrange the first equation of (24)

as

q_m _" qo0 mql 0 I q20--q30 l

ql = qlO qo0 "q30 q20(

q2 lq20 q30 qo0 "ql0)

q Lq3o-qzoqlo qooJ

qll

ql2

ql3

ql4

= Qo q

(275

where qnn = qn(0), q_n : q1(O), etc. It is clear

that th§-matrTx, Qo,'Tn Eq: (27) is orthogonal, so

q = Q_ q (28)

From Eq. (285 we get

q_l + q_2 + q_3 + q_4 = 1



This means that Q is also orthogonal. On the other

hand, we have a similar equation for p,

P " PO _ (29)

where PO has the same form as QO in Eq. (27).
After substituting Eq (28) into Eq. (29) and eli-

minating q, one arrives at

101,Pl dl
s

P2 d2

P3 d3

-dI -d2

do -d3

d3 dO

-d2 dI

"d3 qo

d2 ql (30)

-dl q2

do q3

where the constants do , dl, d2, d3, are given by

do I qo0

dl "qlO
z

d2 -q20

d3 -q30

qlO q20 q30

qo0 -q30 q20

q30 qo0 "qlO

-q20 qlO qo0

P20)

P30 J

(31)

E q. (30) represents the relationship between the
quaternion and the associated costates. Eq. (30)
can be rewritten as

Po

Pl

P2

P3

qo

ql

q2

q3

-ql "q2 "q3

qo q3 -q2

"q3 qo ql

q2 "ql qo

I°°ld1

d2

d3

(32)

Substituting of Eq. (32) into Eq. (16) results in

r : gCm,r) -(112) C d (33)

where d - [dI d) d3]T, C is just the attitude matrix
given by Eq. (2). It can be seen that r is inde-
pendent of do, from Eq. (33), and u depends only
on r, from Eq. (23). Therefore, u is also inde-

pendent of do . This means the arbitrary selection
of the value of dn yields the same extremum con-
trol, u. Now we _an explain the results in Ref.
ii. In view of Eq. (31), we have

d2._42+_2_2 2 2 2 2 (34)
0 _i _2._3 = Poo+Plo+P20+P30

If we set do = 0 the norm of the initial costates
in Eq. (34) reaches its minimum, the solution of
which is considered in Ref. [3]. From Eq. (31) we

can also know that do = 0 means

p(O)Tq(O) = 0

which is the orthogonality condition obtained in
Ref. II

4. Initial Values of Costates
and the Slewlng Time

By means of Euler's elgenaxls rotation theorem,
from the known attitudes at the initial and final

time, q(O) and q(tf), we can find a unit vector
(eigenaxis), c, whlch is fixed in both the body
axes and inertial coordinate system, and a rotation
angle, B*. Then the attitude changes from q(O) to

q(tf) can be realized by rotating the s_acecraft
about the axis, E, through the angle, O .

Theoretically, there are many ways through
which we can change the attitude from its initial
value, q(O), to its final value, q(tf). For exam-
ple, this change of attitude can be achieved by
successively rotating the spacecraft about the x,y,
z axes (i.e, I-2-3 rotations) through certain dis-

placements in the angles, eI, B), 83, respectively.
To do this way, we need to Ipee_ up (and slow down)
the spacecraft 3 times, and the total rotation

angle is, el+ e2+ e_. On the other hand, for the
Euler rotation, we _nly need to rotate the space-
craft about c once through the angle B* which is
less than the total angle required by any other way.
Since the Euler rotation is simple and requires a
smaller angle, it may take less time and consume
less energy (torques and forces). Therefore, in
view of our cost functions, (ll) and (13), it is
reasonable to think that the optimal slewing is
near the Euler rotation. We shall call this rota-

tion the "expected rotation," which is determined
only from the initial and final attitude of the
spacecraft and will be used in obtaining a set of
approximate unknown initial values of the costates
and the starting solution of the quasilinearization
algorithm.

4.1 Initial Values of Costates

Before starting the quasilinearization algo-
rithm, we need to guess the unknown initial values
of the costates, p and r. Considering the analyt-
ical solution about a single principal axis maneuver
in Ref. 3 we define a rotation angle e(t), about
an arbitrary axis E.

0{t)o
where e(O), O(O), _(O),and '_(0) are constants to be
determined.

For simplicity, here we only consider the solu-

tion of O with the following boundary conditions

e(O) : O, G(O) # O, e(tf) : B* 6(tf) : 0 (36)

These conditions correspond to the boundary condi-
tions of the states

q(O), m(O) _ O, q(tf), _(tf) = O

Substituting Eq. (36) into Eq. (35) yields

B(O) : (6e*/t_) - (4G(O)/tf) (37a)

"e(O) = -(120*/t)) + (60(0)/t_) (37b)



For the Euler's rotation, the angular veloc-

ity and its derivatives are expressed as follows

•, , ,,-

= _, _-ce, _-ca (38)

To approximately determine the initial values

of p and r, we need to use the dynamical Eqs. (g)

and (33). Upon using Eqs. (20) and (21), substi-

tuting v (u) into Eq. (g) and solving for r, we

get

r = I w I_- 12 _ (3g)

and the derivatives

= (I_I _1 - ze_ (4o)

q_ Lhe sam_ time, from Eq. (33), and noting

that C T = C "l,

d = 2 CT [g(w, r) - r ] (41)

At the time t=O, by putting Eqs. (37-38) into

Eqs. {39-41), we can get the approximate values of

r(O) and d. As for p(O), we can set pn(O) - O

(since dO can be arbitrarily chosen) and solve for

d 0 and Pi{O), 4=1,2,3, by using Eq. (32).

Now we determine _(0) from known initial value

_(0). Generally, _(0) is not equal to ca(O) s(nce

is independent of _(0). Let e be the difference

between them

e = _(o) -_(0)

To find a minimum value of eTe, we differentiate

eTe with respect to _(0) and note that cTc = l,

we get

8(0) " ¢I_(0) (42)

By using the initial values p(O) and r(O)

obtained above, and integrating the differential

equations (7), (g), (IS-16), with Bu in Eq. (9)

replaced by v in Eqs. (20) and (21), we can get a

set of values, q{t), _(t), p(t), and r(t), O< t <tf,

which will be used as the starting values of-the

quasilinearization method.

4.2 Initial Value of tf

(o)
The starting value tf needs to be made as

close to the m_nlmum tlme, tf , as posslble. Th_s

can be done by using the techniques similar to

those described above. Suppose the slewing motion

- an Euler rotation about a vector, E, through

_, angle, B(t). Then, by putting the first two

:uations of Eq. (38) and Eq. (20) into Eq. (8),

_e get

I _ _ : _2 _ I _ + v (43)

For simplicity, we only consider the case

Vimin = - Vimax. Then, let ci - Vimax and vi=c_i;
the above vector equation can be expressed as t_e

following 3 similar equations for B(t):

ai _ = bi _2 + ci _i i = 1,2,3 (44)

where al, bl, and c i are constants, _i is the

normalized control about the ith body axis and

}_il _ i i . l,z,3 (4s)

Each equation of Eq. (44) with the boundary condi-

tion Eq. (36) can be treated as a minimum time con-

trol problem with the constraint (45). It is easy

to see that the control for this problem is of a

bang-bang type and the the problem can be solved

analytically to get the minimum time t*fi (i=l,

2,3) as functions of e* and _(0). The results are

shown in Appendix II.

Since the only minimum time, tf*, that every

equation of Eq. (44) can accept at _he same time

is the longest one, we use the largest one as our

initial guess for tf.

We choose a quasilinearization algorithm to

solve the two point boundary value problem because

this method needs only to solve linear differential

equations and it converges quadratically.

In the quasillnearization algorithm, the Iin-

earized state and costate equations are kolved us-

ing the method of particular solutions. _ The

computational values of u, which satisfy Eq. (23),

are determined by a technique similar to that used

in Ref. 9. The minimum slewing time is obtained by

the following procedure. For an assumed given

slewing time, tf, as a result of the iterations,
the routine arrlves at the (converged) values for

the initial costates. Then, a check is made as

to whether one of the control inputs is of a bang-

bang type. If yes, this slewing time is designated

the minimum time. If not, the assumed tf should

be shortened and the iteration cycle restarted in

order to determine new values for the initial co-

states and new time histories for the control effort

5. Numerical Results

Finally, we apply these methods described in

the previous sections to the SCOLE slewing motion]

Fig. la shows the SCOLE configuration. It is com-

posed of a Space Shuttle and a large reflecting

antenna. The antenna is attached to the Shuttle

by a flexible beam. Since we only consider the

motion of the rigid STOLE in this paper, the flexi-

bility of the beam is ignored. The X, Y, Z axes

are the spacecraft axes corresponding to roll,

pitch and yaw axes, respectively. The controls

considered in this paper include three moments

about the X, Y, Z axes of the system and two forces

applied at the center of the reflector in the X, Y

directions only. The inertia parameters of the

SCOLE and the saturation levels of the controls

are :

Ill = 1,132,508,122= 7,007,447, 133 = 7,113,962

l

ll2 = -7,555, 123= I15,202, 131 = 52,293

Torques: lui Jmax = I0,000 ft-lb, i = i,2,3.

Reflector actuators: Ifj Imax = 800 lb., j= 1.2,

138



We have done some numerical simulations for
the following cases: (a) Adtagonal inertia
matrix I is used. The control is assumed to be
provided only by torquers on the Shuttle. No con-
trol forces on the reflector are assumed. The ex-
pected rotation is a rotation about one of the
three principal axes, through 20 deg., from rest
to rest. The result ts exactly the same as that
of the theoretical analysls discussed earlier in
this paper, i.e., the control torque about the
slewing axis is of a bang-bang type while the
others remain zero.

(b) Extend the inertia matrix in case (a) to
a non-dlagonal form. The expected rotation is a
rotation about one of the three spacecraft axes
and the rotation angle Is 20 deg.

Figs. 2-3 give the control torques and atti-
tude angles (1-2-3 Euler angles) for the expected
rotations "X-axls slewing" and "Z-axis slewing,"
respectively. Fig. 2a shows that uw is nearly of a
bang-bang type, while u., u. are nol. The non-zero

contributions of the u.Jand'uz are due to the off-
set of the inertia dls(rlbutlon of the SCOLE con-

figuration (non-diagonal matrix I). Similar situa-

tions are shown in Fig. 3a, where uz is nearly of a
bang-bang type and the others are not.

The _tarting value of t_O) for these sle_ngs
iX- and Z- axes) are t_0)= I_.574g sec. and

t_O) = 31.5166 sec., re_pectlvely, by using _he
m_thod in section 4.2. The minimum time, t}, we

actually obtained are t_ - 12.57 sec. and t_ =
31.33 sec., respectively. These results indicate

that the estimated values for t_ are very accurate.

In Fig. 2b, BX changes from zero to 20 deg.,

but ey and ez change very little during the slew-
ing and finally approach zero. The non-zero changes

in By and Bz are also due to the offset of the
structural distribution of the SCOLE.

In Fig. 3b, unlike the case in Fig. 2b, the
Bx changes greatly. This change is due to the
d_fferences in the moments ot inertia about the
X-axis and Y-axis.

Fig. 4 shows the control torques for the

"X-axis slewing" with a slewing time tf= 15.37 sec.,
which i_ 2.8 sec. more than the minimum time t_ =
12.57 _ec. (Fig. 2). The controls are almost lin-

ear f,;nctions of time (rest-to-rest slewing), ux
is !<_ than the saturation level, and Uv, uz are
n6_ :ero. From Fig. 4 and Fig. 2a, we lee that
_ - _ore control effort (approximate 50%) is

Pd if we increase the slewing time a little.
ther feature of using a longer slewing time in
computation is that it needs less number (4

_es) of iterations for convergence than by using
_inimum slewing time t_ (12 times). These _ro-
_rties suggest that, in practical applications of
_is problem, it is not necessary to seek the mini-
jm time, t), and the associated extremum controls.
it is enough to know approximate values of the t)
and the controls. The results of Fig. 5 for the
"Z-axis slewing" are similar to those of Fig. 4.

(c) Following the case (b), we now add two

control force actuators on the reflector, fx and

fy-

The associated alignment matrlx,B, in Eq. (8) is

1 0 0 0 130 ]
B - 0 1 0 -130 0

0 0 1 32.5 18.75

Figs. 6 show the control torques, forces and atti-
rude angles for the "X-axis slewing" motion. The

slewing time t_ Is greatly shortened, t_ - 3.988
sec. (about one third of the slewing time without

the forces, fx and fy ).

Figs. 7 and 8 show the controls and attitude
angle changes for the "Z-axls slewing." For the
sake of comparison, Ne use 2 different tf in the
computation, tf- 27.5 sec., @nd t)- 20.0 sec.
(minimum time; recall that t_ =31.33 sec. without

fx and fy), By comparing Ft_s. 7 with Figs. 8
we can see that the control torques approach the
bang-bang type when the slewing time Is shortened,
and the maximum amplitude of the control forces
increases gradually. From Flg. 7c and Fig. 8c, we

can also see the obvious increases In 0x and Bv.

This is due to the increases in ux, Uy, fx,and'fy.

(d) Now we consider a general case. Suppose
the SCOLE is in an Earth orbit and we need the line

of sight to be directed toward the center of the
Earth. The orbital coordinate system (x,y,z) is
shown In Fig. lb. Suppose, before the slewing, the
Y axis of the spacecraft coincides with the orbital

y axis, and the angular difference between Xand x
(or Z and z) axes is _- 7.897224212 deg. Thu_the
initial attitude quaternion of the spacecraft is
q(O)= [cos(o/2) 0 sin(_/2) O]T. According to Ref.

l, the unit vector along the lin_ of sight in the

rigid SCOLE coordinate system is RLOS

- [0.li12447155 -0.2410302170 0.9641208678] T

The direction cosines of the orbital z axis in the

body system at the initial time are Z/B = [sin_ 0
cosa]T. The angle betwee9 RtOS and Z/B at the
initial time is GLos(O) = RLO_. Z/B= 20 deg. The
eigen axis of the expected rotation in the body
system is determined by

c = (RLosx ZlB)IJRLosX zlBI

Thus,the quaternion for this rotation is

qc = c°s(20°/2)' qi = ci sin(20°/2)' i = 1,2,3

From (5) we can get the final attitude quatern-
ion, q(tf). Fig. 9 shows the control torques,
reflector forces, and attitude angles for this
slewing motion. The eLOS in Fig. 9c is the angle
between the line of sight and the line of the
target direction (from the spacecraft to the center
of the Earth).

(1)

(2)

6. Concludinq Remarks

There is a good agreement between the guessed
value of tf and the value of tf to which the
algorithm converges in the case (b).

The guessed initial values of the costates
here: p(O), r(O) are adequate for the algo-

rithm to converge. If the slewing time, tf,
is sufficiently larger than the minimum time,

pAGE IS



(3)

t_, then, the converged values of p(O) and
r(O) are very close to the guessed values and
less number (4 times) of iterations is needed

(Fig. 4). The same situation was observed
in Ref. 8

The control profiles obtained in this paper

give us a good reference for future use.
For example, an extension to the minimum
time slewing motion of the SCOLE model con-
taining both rigid and flexible components
is planned.
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Appendix I The Term )(_, r) in Eq. {16)

The term I-l_Im in dynamical equdtion (9) can

be replaced by

=

: [ A:B] u

where the aij and bit(the elements of 3x3 matrices
A and B) are constan_associated with the inertia

p_ra_eters of the spacecraft. Then the term
r I- _lw of the Hamiltonian, H, in Eq. (14) has
the form

h=rTl'l,T,l_=[Rl Rz R3 R4 R5 R6]T_

where Ri are

[RIR2R3] T = ATr, [R4RsR6]T = BTr

The term g(_, r) in Eq. (16) is obtained by

g(=,r)= -()h/B=)= - 2.,R6%i]R6 2R2 R4 c°2

R5 R4 2R3 =3

Appendix 11 Solution of Eq. (44)

Eq. (44) can be rewritten as

ai e = bi_2 + ci_ i (44)

For simplicity, we only consider the solutions for
the following boundary conditions

B(O) = O, B(O) = O; B(tf) = B*, e(tf) = 0
U_l)

Suppose a_ _ O, b_O and let b=bi/ai, c=cl/a i
(suppose _>0), wemcan rewrite Eq. (44) as"

= b_2 + c_ (II-2)

Since the control for this problem is of a bang-

bang type with only one switching point, then,
by integrating Eq. (II-2) and using (II-l), we get

= /c{e2b6-1)/b, for _=l; (II-3)

=,/-c-_-_e_2_B-e*))/b, for T= -I (11-4)

By eguating Eqs. (II-3) and (II-4), we get e=e s
and 6=es at the switching point, t--is,

Bs= (l/2b)log[2/(l+e-2bB*)] _s=Jc(e2bBs-l)/b

Finally, by integrating (II-3,4) and using (II-l),
we get

cosh-l(e-bes) / _ b<O;

ts= {
[(,/2)-sin-l(e-bes)]/Ix:Crlx:--_, b>O



and

I ts+[(_IZ)-sin'l(eb(O_Os))I/Zb-c-, b<O ;if=
ts+COsh'l(eb(O_°s))/V_ -, b>O

For the case 0(0) # O, more complicated solutions

can be obtained, but are not given here.

X

Fig. la Spacecraft Control Laboratory Experiment Configuration (SCOLE)
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, Equatto_ of _otton

'Derived using a Newton-Euler approach

, &ssumptions

- Reflector and Shuttle rigid

- Mast has constant cross-section

- It is assumed to undergo small elastic deformations only

- Its modal shapes In orbit are assumed to be the same as

those of an identical:non-rotating beam,

Stability Analysis (Rigidized SCOLE)

A stability analysis of the rigtdzed SCOLE was conducted for

the following configurations:

a) Rigid - no offset, Pitch motion decouPles from roll

and yaw. in the linear ranges, System not stable

b) Rigid - with offset parallel to roll axis, Pitch motion

still decouples from roll and yaw in the linear range,

System unstable.

c) Rigid - With both offsets (parallel to roll and pitch
axes). The motions in all 3 degrees of freedom are

coupled, System found to be unstable,

.Control Laws

Assumption: All the states of the system are available,

It was suggested by J,G, Lin that an intuitively appeaiing

practical approach to achieve the LOS pointing objective

is a two-stage procedure, (a) Slew as if rloid then,

(b) dampzout flexible dynamics,

,The linear regulator theorv used here to control

-the linear model of the rigidized SCOLE,

-The linear model of the actual SCOLE configuration including

the first fo,.rflexible modes of the mast,

Next

Preliminary slew maneuvers st rigidized SCOLE,
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MINIMUMTIHE ATTITUDE SLEWING

MRNEUVERSOF A RIGID SPACECRAFT

OBJECTIVE

. DEUELOP COMPUTATIONALTECHNIQUES TO SLER

i_ GENERALRIGID SPI_CECRRFT ( INCLUDING

RIGIDIZED $COLE ) FROH AN ARBITRARY INITIAL

ATTITUDE TO A FINAL REQUIRED ATTITUDE

PRECISELY, AND SATISFYING THE FOLLOi4ING

COHDITIOHS:

, IN HIHINilH TIME

, THE CONTROLS HI,rE -_:ATtlRCITIONLEUEL_;



MET H ODOLOGY

• THE MNXIMUM PRINCIPLE FROM OPTIMNL CONTROL THEORY IS

APPLIED TO THE EULER* S DYNAMICAL EQUATIONS AND THE

QUATERNION KINEMATICA]r,,, EQUATIONS OF THE SYSTEM TO

DERIUE THE NECESSARY CONDITIONS FOR THE CONTROLS.

THIS LEADS TO THE TNO--POINT BOUNDARY--UALUE PROBLEM.

• AN INTEGRAL OF n QUADRATIC FUNCTION OF THE CONTROLS

IS USED AS A COST FUNCTION. BUT THE INTEGRATION

PERIOD OF THIS INTEGRAL,, CALLED THE SLEWING TIME.

IS TO BE CHANGED UNTIL IT REACHES ITS MINIMUM UALUE.

• THE RESULTING 7PBUP IS SOLUED BY A QUASILINEARIZATION

ALGORITHM ( METHOD OF PARTICULAR SOLUTIONS ) .

• EULER _' S EIGENAXIS ROTATION THEOREM IS USED TO

APPROXIMATELY DETERMINE THE INITIAL UALUES OF THE

COSTATES AND THE SLENING TIME AS NELL AS THE

NOMINAL SOLUTIONS WHICH ARE UESD TO START THE

QUASILINEARIZATION ALGORITHM.

. THE MINIMUM SLEMING TIME IS DETERMINED BY SHORTENING

THE TOTAL SLEI*IIN< _- TIME UNTIL AT LE,.ST ONE OF THE

CONTROLS BECOMES A BANG--BAN(; TYPE.
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CONCLUDI NG REMARKS

. THE SLEWING MOTION NEED NOT BE RESTRICTED TO A

SINGLE AXIS MANEUUER.

• THE GUESSED STARTING UALUE OF THE SLEMING TIME IS

VERY CLOSE TO THE CONUERCED UALUE FOR THE SCOLE

EXAMPLES AND SUBROUTINE USED HERE.

• THE GUESSED INITIAL UALUES OF THE COSTATES ARE

"ADEQUATE FOR THE ALGORITHM TO CONUERGE.

• THE METHODS USED HERE MAY BE IMPLEMENTED FOR

PRACTICAL CONTROL SOURCES WHICH MAY HAUE MORE

CONSTRA I NTS.

• AN EXTENSION TO THE MINIMUM TIME SLEWING MOTION

OF THE SCOLE MODEL CONTAINING BOTH RIGID AND

FLEXIBLE COMPONENTS IS PLANNED.
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Appendix- Chapter II

Stability Analysis of Second Order System

with Delayed State Feedback

As a second order differential equation describes the dynamics of

a single mode of any large space structure, the stability analysis of such

a system with delayed state feedback is analyzed and the amount of delay

that can be tolerated by the system without becoming unstable is arrived

at analytically.

The differential equation of second order with state feedback can be

written as :

** t •

xi + Z_i_ix i + _i2xi =-krxi(t-h) -_i%t-h) (I)

where

xi = ith modal coordinate

_i " ith natura_ frequency

_i t = ith mode inherent damping ratio

kr = rate feedback gain

= position feedback gain

h = time delay

The feedback gains kr, _ are designed for the required stability and

transient response specifications without taking the delay into consideration.

!

The inherent damping ratio, _i and the feedback gains, kr and _. will

give rise to five possible .combinations as shown in Table I and are thus

analyzed separately for mathematical convenience and easy understanding.
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' = 0 _ = 0 and, kr > OCase I: _i '

The differential equation of the system can be written as:

xi + _ xi - krX i(t-h) (3)

t

Case _ i kr kp

I =0 >0 =0

II >0 >0 =0

III = 0 > 0 • 0

>0 =0 90

V >0 >0 _0

Note: The remaining three combinations are
neither feasible nor of interest.

Table I: Fe_ible Combinations of _[, kr, kp
for Stability Analysis

and the corresponding characterstic equation is given by:

s2"+ _ + 2_i_ise -sh = 0

where kr -- 2;i_ i.

(4a)

The value of h for which the roots of equation (5) cross the imaginary

axis can be evaluated by substituting s = jm.

Thus 2 2

wi -_ + J2_ieiesinwh + 2_imi_cosmh = 0 (4b)

For equation (4b) to be satisfied

sin_h = 0

and 2 _ 2 + 2_i_i_ coswh- 0 (5)



Thus _h -- _/2

and h =
_i [{i + / I+¢i2 ]

Case II: {_ > O, kr = Z{i_ i and kp = 0

The characteristic equation of the system described by equation (1)

is given by

Thus cos_h = -{i/{i
l

and h - c°s'l(_i/_i

For the case where _i<_i thesystem will always be- stable since no value

(7)

C8)

of h exists for which the roots of {7) cross the imaginary axis.

)

of _ih versus _i for various values of gi is shown in Figure 2.I.

A plot

C63

Case III: {i - O, kp - kr > 0

The. characteristic equation is given by

Thus tan _h = _kr

and 2 1= _- [(2m .k)i 2 +. 'z[_'4_2ik2r'4_]]. (11)

Plots of ha i versus kr/_ i for various values of kp/_ i are shown in

Figure 2.2. It can be seen here that these are many combinations of kp and

k r for which the roots of Eq. (10) can cross the imaginary axis - i.e.

value of hm i which leads to instability.



Case IV:

Thus

!

The characteristic equation is given by

t

2q _i _
sir_h --

..d .a..iZ(I.Z_'iz)+.iZ¢[(I.ZqZ)Z+ %/.iZ)Z]

The plots of h_ i versus _/_2 for various values of E1 are shown in

Figure 2.3

(12)

(13)

(14)

' kr.> 0 ,Case V: ¢i > O, , kp _ 0

The characteristic equation is given by

(_i2-s2+_kr sin_h+kpcos_h)

+ j(2_ l _i_+_krcos_h-kpsin_h) = 0

By equating the imaginary part to zero, _h can be evaluated as

(lS)

t

2_ i _i_ _k r
) - tan-z ( )

•_h = sin-I_ e kp2_ kr2.
(16)

Y

after substituting wh in the real part of equation (i_)

the following equation in the single unknown variable w can be obtained

2-t0_i 2_krsin (sin'ly'tan'l( _k-'/-r3)

_kr

+ kp cos (sin'ly-tan-l( -_p ))= 0
(17)

17f



Using equations (17) and (16), the limiting value for given values of gi'

kr, kp and mi can be determined. As the equation (17) is nonlinear,

numerical procedures may have to be used and thus the generalized plots

similar to the other cases may be obtained_

2-14



• l • _SO

l. 800

l .6S0

1 .$00

1.3S0

I ,280

L• 0$0

.900

.?SO

• 600

"O .000

z:' = L-u%.erentdamping

{;' = 9.2, 0.4 0.6 0.8 1.0

.............,:.............'I..'..............I..._...........;......._.......;..............t...............:.':............._................'..............
: "*: : : - i _ : :'_, : i

: :% : , ! _: ! i _, ! !

............_..............i-kc........!........."_'"+.............i'.............!"_..........._......\........_..............!..............
_ ! \ ! , i .'% : _ " - : :

............_'...............i.......'_'"_.............'_...............:"_,"........._......"......":.........."_.-.i..............,:..............
: \" :', ,,. : ,_ . \ • ,

: i _ • \ : \ : " : :, .
............_.............._ ........._ ...........÷...._,.................% ................._,..=.............._..............................

: ! : : • . . . _ ,: : : : '% : ! .% : '.... :

................................... i....-_.........i...._':'..:......_..............

i .............\< ................i'"<.......
i : : • . .._ - : • ,...,.

............,..............._ ......_ ........:....:........._..,..,'._.,....._........:....._..........:-.

:..............._-_ :: : : : : i'-. !

............•................:..............:.............._ .............................!..............÷ ...............:........ -..._.,,.,,..;.

.$Se .3eO .4sO .6oe .?so .gee l.ese z.2oe z.3se t.see

active damping ratio

!

Figure Z.l: Plots of h_: vs ¢ correspondence to Case II with {i
as a parameter-, i

Z-IS



LoO00

,900

.O00

.700

,600

,$00

.MOO

.300

.2OO
P/':

.100

O.OOO
O.OOO .350

o

Figm'e 2.2

• : • • : •

: ._............N/_i ......:o,z ......._............................,.............
_1_. * -- - : Ue4" :

•":........ 7 ..... .."........... • " .......................................

.,i.z......... _ ....... 6....................................
¢ : -, "i" --

• .j .

7"77' .....'_"7;_:_ :x _ .........i......... ;
• :. t /_-" "_ : \ __, i

•'r /,:.:'_ ..............:.._ ......-_ .................... _.__
/ : i .,." : •: : ! '. :--'_-..I i

,/ _.,.' _ _ .'_ _. ! ! !

_._.::;,;::.............._...........::-.................._......L.o.,.8......................._..............._.............._.............
,Z ............................. 1'.0

• ..: ............................................................. -_ .............. i ................ • .............. :............... i .............

.;,ee 1.ese l.,ee I..?se z.lee 2.,lse 2.see 3.1se

Plot of h_ i vs krl_ i corresponding to Case III kr/_i
with 2

kp/_ • as a parameter

3.SOO

2-16



I'_ i
1.800

// 1.628

| °440

1.260

I, 080

.900

• 71!0

.1140

,360

.180

0 • 000
o.8eo .4oe

Figure 2.3:

: . . . I :

............ i_............... _" _ i i .... i....................................................................................._._..__._..._-......_ _ °.9

............_...............!........\'! ............_..........':_"_"_ii.............._! .............: ..........!.............._.............., i .) ') _.O.S ) )

.............).........,Ti..........'T...........Y:_)_/ ...........T..............Y..............

............ ._............... ................. .._............ ÷.............. :._-._......... .:...../. ......_._._. ...... _ ............. _.
!\ ! i "_. i i _--C/ i / "!--.i
i \ i i _'- i / _'_iJ : :- " - -

............ . ..... : ........ : ................. ",__. _..- : ........................... ,-_ •;._. ............. .:.............

)....._':T , _---_:.............72 , ----..---..--._iI
.eee , .2ee I .6ee 2 .eee 2.4ee 2 .eee 3.2ee _ .6ee 4 .eee

• k_l,.
Plots of h_ i vs kp/_ 2 correspondence to Case IV with

¢i as a parameter

/79

2-17



180



D %,. Q

N89- 1346 8

INITIAL TEST RESULTS ON STATE ESTIMATION

ON THE SCOLE MAST

D. SPARKS, JR.

NASA LANGLEY RESEARCH CENTER

M/S 161

HAMPTON, VA 23665

(804)-865-4591



Abstract

Modal state estimation tests are performed on the SCOLE mast for

the fixed Shuttle platform case. Kalman filter state estimation results

from a five mode computer model of the SCOLE mast, developed from a

finite element analysis, are compared with those state estimates

obtained from laboratory tests. Two comparison runs are presented, one

an excitation of the first two bending modes, another, an excitation of

the first torsional mode of the mast. Results from both runs show poor

agreement in modal estimation between the computer model simulations and

the laboratory test data. At present, the reason(s) for this poor

performance is unknown. Both the laboratory hardware and software and

the computer model are being checked for possible sources of errors.

Further computer simulations as well as laboratory testing will be

performed.
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MODEL OF SCOLE MAST

® MODAL DATA FORM FINITE ELEMENT ANALYSIS OF MAST

® FIVE DECOUPLED MODES (FREQUENCIES .443-4.345HZ)

® ACTUATORS: FOUR JETS AND THREE REACTION WHEELS

® SENSORS: SIX LINEAR ACCELEROMETERS AND 3 AXIS

RATE GYRO

® MODAL STATE AND OUTPUT EQUATIONS :

X(k+l) = AX(k) + BU(k)

Y(k) = CX(k) + DU(M)

Q STATES ESTIMATED BY KALMAN FILTER
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KALMAN FILTER

O EQUATIONS IN BASIC FORM:

m A
X(k+l) = AX(k) + BU(k)

A _ A
X(k+l) = X(M+I) + G(Y(k) - Y(k))

X - PREDICTED STATE

A
X - ESTIMATED STATE

G - KALMAN FILTER GAIN MATRIX

® KALMAN FILTER GAINS ASSUMED CONSTANT

- SENSOR NOISE INTENSITIES ESTIMATED FROM

MANUFACTURERS' DATA

® ABOVE FORM USED IN SOFTWARE FOR LABORATORY TESTS



SIMULATION AND TEST PARAMTERES

RUNSUSEDFORCINGFUNCTIONTO EXCIT SCOLEMAST

F = A sin(_ T)

RUN EXCITATION TIME FREQUENCY AMPLITUDE DURATION

1 i0 sec .443 HZ 5.0 30 sec

2 i0 sec 1.504 HZ 2.0 30 sec

o COMPUTERSIMULATIONS USEDSAMEVALUES



VIBRRT[ONRL MODE,

EAL 1ST BENDING MODE (MODE 1)

FREQ [HZ) , _26 XlO +00

oe om mm Io oeol
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0

_ eo eoo
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V[BRRT[ONAL MODE,

EAL 1sT TORSIONAL MODE (MODE _)

FREQ (HZ) . 15D_ X1O +01
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COMMENTS

O LABORATORY AND COMPUTER SIMULATIONS OF MODE ESTIMATES
ARE VERY DIFFERENT !

® ONLY GENERAL AGREEMENT BETWEEN LABORATORY AND COMPUTER

SIMULATION IS IN WHICH MODES ARE "DOMINANT" FOR THE

RESPECTIVE FORCING FUNCTIONS

o CONFIDENCE IN LINEAR COMPUTER SIMULATION MODEL



SUMMARY

o MORELABORATORYTESTS ARE REQUIRED

e RE-CHECKLABORATORYAPPARATUS(SOFTWAREAND HARDWARE)

o PARAMETERIDENTIFICATION ANDRE-DEFINING MODELOF SCOLE
SIMPLE LINEAR DECOUPLEDMODALMODELMAYNOT BE
SUFFICIENT FORPROPERLABORATORYEXPERIMENTS
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t _

I, INTRODUCFION

II, STRUCTURAL VIBRATIONS Ir,l SCOLE EXCITED BY

TIME-MINIMIZED RAPID SLEWING

-- B,',F!G-PAusE-Bs_r,I_ (IRPB'_ CONTI','OI - (_,l_ifl I r_)

-- BANG-BANG (BB) CoNrr,'oc (O, 80, 25 LBS)

ilOW BAD ? ALWAYS THAT BAD':)

NO FORCE MEANS LEAST EXCITATION?

Ill, ACTIVE DAMPING OF BPB-ExcITED VIBRATIONS

USING HIGH-PERFORAMANCE MODAL DASHPOTS

DIRECT VELOCITY OUTPUT FEEDBACK _EALLY CANNOT

CONTROL EXCESSIVE VIBRATIONS EFFECTIVELY, QUICKLY?

IV, COMMENTS

V, CONCLUSIONS

Vl, RECOMMENDATIONS

1<74



| SCOLE PRIMARY CONTROL TASK IS:

RAPIDLY SLEW OR CHANGE THE LINE-OF-SIGHT (LOS), AND

SETTLE OR DAMP STRUCTURAL VIBRATIONS TO A REQUIRED DEGREE

I THE OBJECTIVE IS:

MINIMIZE THE TIME REQUIRED TO SLEW AND SETTLE,

UNTIL LOS REMAINS WITHIN A SPECIFIED ANGLE,

| 2-STAGE APPROACH:

FIRST: SLEW THE WHOLE STRUCTURE LIKE A RIGID BODY,

-- IN A MINIMUM TIME,

-- UNDER THE LIMITED CONTROL MOMENTS AND FORCES

THEN: DAMP THE EXCITED STRUCTURAL VIBRATIONS

I SOME

CASE

FIO

"4" FII

FI2

PREVIOUS RESULTS ON oTAGE-- DESIGN

STRATEGY-
(LB-FT)---

i ii|

BB

BPB

_B

MOMENT

_ (LB >-"----

i0,000

i0,000

lO,OOO

FORCE
(DEG)'--

LOS ERROR_
(SEC)----

SLEW TIME

0 ,150 12,604

800 .086

,097_OU

4.892 •

0 OBJECTIVE OF CURRENT STUDY

SFAGE-2 DESIGN: ACTIVE CONTROL OF EXCITED VIBRATIONS



FORCE

(LB)

iiii

SO0

8O

25

STRUCTURAL VIBRATIONS EXCITED BY

BANG-BANG-TYPE RAPID SLEW MANEUVERS

MOMENT

(LB-FT)

II

i0,000

SAME

SAME

SAME

STRATEGY

(SEC)
L

,8S7 (B)'

3,158 (P)

,867(-B)

6,3O7 (B)

6,307(-B)

4,416 (B)

4,416(-B)

5,479 (B)

5.479(-B)

SLEW TIME

(SEC)

4 qQ9
, UJL-

(NOTE i)

12,614

8,832

10,959

LOS ERROR

(DEG)

89,8

OR

133,3

6,25

24,7

0,51

DEFLECT,

(FT)

+!!4

-113

+20,59

-10,83

+O,25

-0.30

|ii

ATT, DEV,

(DEG)

IIL _ J

+88,35

-86,96

I I|

+15,98

-8,31

+0,16

-0,30

NOTE i,

-- i ml --, __ _ i

TIME OF APPLICATION IS 1,734 SEC, ONLY 35,32% OF THE SLEW TIME,
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I USING NO FORCES Old REFLECTOR DOES NOT MEAN LEAST EXCITATION!

I IF LOS ERROR IS THE ONLY CONCERN, STOP USING 800LB FORCE;

USE 25LB (VERNIER THRUSTER LEVEL) INSTEAD,

-- BUT TIME IS EQUALLY IMPORTANT!!!

0 ADDITIONAL TIME OF VARIOUS LENGTH IS STILL REQUIRED

FOR DAMPING OUT THE EXCITED VIBRATIONS,

ti VIBRATIONCONTROL CHALLENGE:

CAN EXCESSIVE VIBRATIONS,

SUCH AS EXCITED BY THE 800LB RAPID SLEWING,

BE EFFECTIVELY SUPPRESSED TO A REASONABLE LEVEL

QUICKLY, SAY, IN _ SEC?



MODAL-DASHPOIDESIGNMD1

PARF I: LINEAR VELOCITY FEED£ACK

I Y!_I
L J

U/] =

IusII I
L J

r ]IAPPLIED FORCE ON REFLECTOR IN X-DIRECTION

F4 = I I
IAPPLIED FORCE ON REFLECTOR IN Y-DIRECTIONI

L J

7
MY151
I I
I I
IYi61
L J

FRATE OF XZ-DEFLECTION AT REFLECTOR END 7

=I I
IRATE OF YZ-DEFLECTION AT REFLECTOR END I

L J

GLVR

r II ,58420630E+01 ,43392044E+00
--I I
I ,42D3_249E+UO ,69/96355E+011
L J

ADDITIONAL DAMPING RATIO DESIGNED = 0,6Z37, MODE 2

= 0,6, MODE 1

2% SETTLING rIME OF 3 SEC IS DESIGNED FOR MODE 2



MODAL-DASHPOT DESIGN MD1

PART 2: ANGULAR VELOCITY FEEDBACK

ru4]
U51I

I
i = - GAVR

U61
L J

FYIo

Y11

YI2
L

iu4]
I I
IU51
I I
IU I
I 61
L _1

= M4 =

q
APPLIED MOMENT ON REFLECTOR ABOUT X-AXIS" I

I
APPLIED MOMENT ON REFLECTOR ABOUT Y-AxIsl

I
I

APPLIED MOMENT ON REFLECTOR ABOUT Z-AXIS|

J

FYIo

Yii

YI2
L

m

RATE OF REFLECTOR ROLL ATTITUDE DEVIATION

RATE OF REFLECTOR PITCH ATTITUDE DEVIATION

RATE OF REFLECTOR YAW ATTITUDE DEVIATION

GAV R =

F
I ,24172/0/E+04
I
I ,]_5734!03E+03
I
I ,13433660E+04
L

,16653096E+03

,21781213E+U4

-,22055215E+04

45158162E+03]
' I

I
-,72768193E+031

I

,4295!681E+O4J

ADDITIONAL DAMPING RATIO DESIGNED = 0,03, MODES 3,4,5

INHERENT DAMPING RATIO ASSUMED = 0,U03 ALL MODES
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SUMMARY -- MD1

LOS ERROR < 18,46°

< 17,46°

T = 2,5 SEC

T > 2,5 SEC

-_ ii,79o T = 3,! SEC

DEFLECTION < + 5 FT

< + 0,5 FT

oT = 2 SEC

r = 4,2 SEC

2% SETTLING TIME _ 2,9 SEC

LAST PEAK REFLECTOR ATTITUDE DEVIATION:

ROLL _ 0,460°

PITCH _ 0,546o

YAW _ 1,360°



SUMMARY -- MDIA

ADDITIONAL DAMPING RATIO RE-DESIGNED = 0,6, MODE 2

CORRESPONDING 2_ SETTLING TIME FOR MODE 2 IS 3,38 SEC

GLVR

r II ,58420557E+01 ,45784262E+00
=I I

I ,42061494E+00 ,62209375E+011
L J

LOS ERROR < 16,660 (_) T _ 1,8 SEC

"- 9,57o (,_) T = 3,i SEC

DEFLECTION < + 7,35 FT (_) T = 1,3 SEC

< + 0 75 FT ('_) T : 3,/ SEC

2% SETTLING TIME & 3 SEC

LAST PEAK REFLECTOR ATTITUDE DEVIATION:

ROLL _ 0,714° (_)

PITCH = U,5820

YAW = 1,599°



COMHENTS

| THE FIODAL DASHPOT DESIGN MET THE VIBRATION CONTROL CHALLENGE

FAIRLY WELL: EFFECTIVE, FAST SUPPRESSION OF EXCESSIVE VIBRATIONS

0 FOR COMPLETE SUPPRESSION AND PRECISION POINTING

AFTER THE QUICK SUPPRESSION,

EITHER: INCREASE THE MODAL DASHPOT FEEDBACK GAINS

OR: SWITCH TO INTEGRAI ED DESIGN OF LQG/LTR AND MODAL DASHPOTS

! DIRECT VELOCITY OUTPUT FEEDBACK CONTROLLERS

NEED _JOTBE OF "LOW AUTHORITY", LOW PERFORMANCE,

-- ADDITIONAL DAMPING RATIO CAN BE DESIGNED TO BE AS HIGH

AS TO THE OPTIMAL VALUE 0,707, IF NEACESSARY;

INSTEAD OF RESTRICTING TO ONLY ABOUT 0,1

0 No MORE HIGH-GAIN PROBLEMS OF ORIGINAL CANAVIN DEDIGN

0 SPILLOVER IS MINIMAL: PERFORMANCE DEGRADATION UN-NOTICEABLE

SPILLOVER IS BENEFICIAL: CONCOMITANT ACTIVE DAMPING OF UNMODELED

MODES

0 SYSTEMATIC DESIGN METHOD FOR MODAL DASHPOTS WORKS!



|

CONCLUS10NS

2-STAGE APPROACH IS FEASIBLE AND PROMISING FOR

RAPID SLEWING AND PRECISION POINTING OF SCOLE

| NOT ALL BANG-BANG TYPE OF TIME-MINIMIZED SLEW MANEUVERS

WILL EXCITE LARGE STRUCTURAL VIBRATIONS IN SCOLE

! MODAL DASHPOTS CAN BE A CONCENTRATED HIGH-POWER VIBRATION CONTROL,

AS WELL AS THE USUAL

DIFFUSE ("BROAD-BAND"), LOW-POWER ("LOW-AUTHORITY") CONTROL

|

RECOMMENDATIONS

LIMIT THE MAGNITUDE OF APPLIED FORCES ON REFLECTOR TO

EITHER 25 LB

-- LEVEL OF VERNIER THRUSTERS ON THE REAL SPACE SHUTTLE

OR 150 LB

-- LEVEL EQUIVALENT TO THE COLD-GAS JETS OF LABORATORY SCOLE

0 To COMPLETE STAGE 2, ADD AN INTEGRATED DESIGN OF

LQG/LTR (LINEAR-QUADRATIC-GAuSSIAN/LooP-TRANSFFR-RECOVERY)

AND MODAL DASHPOTS

i VALIDATE THE 2-STAGE APPROACH USING THE SCOLE LABORATORY FACILITY

WITH A COMPREHENSIVE SEOUENCE OF INTEGRATED DESIGNS AND EXPERIMENTS

COUPLING NONLINEAR RIGID-BODY MOTIONS WITH FLEXIBLE-BODY DYNAMICS
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PLACING DYNAMIC SENSORS AND ACTUATORS

ON FLEXIBLE SPACE STRUCTURES

Gregory A. Norris and Robert E. Skelton
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ABSTRACT

Input/Output Cost Analysis involves decompositions of the quadratic cost function

into contributions from each stochastic input and each weighted output. In the past, these

suboptimal cost decomposition methods of sensor and actuator selection (SAS) have

been used to locate perfect (infinite bandwidth) sensors and actuators on large scale

_ys:ems. This paper extends these ideas to the more practical case of imperfect actuators

at_d sensors with dynamics of their own. NASA's SCOLE examples demonstrate that

sensor and actuator dynamics affect the optimal selection and placement of sensors and

_2Ctttt_tOrS.

l'nll llll l Ptatll glatlnt



1.0 INTRODUCTION

The objective of this paper is to develop and evaluate a method for the selection of

sensors and actuators in the control of finite-dimensional linear systems using imperfect

sensors and actuators -- devices which do not provide instantaneous responses, but have

nontrivial dynamics of their own. In addition, the plant noise and the measurement noise

is assumed correlated. This important case allows the use of accelerometers as sensors

(this always yields correlated plant and measurement noise). Application of the

generalized method to practical control problems demonstrates that correlatedness of the

noise and the dynamics of the actuator and sensor devices can significantly affect the

optimal selection of both the number and location of sensors and actuators.

Consider as a starting point the following familiar dynamic system model:

_p = Apxp(t) + Bp[f(t) + w(t)] (1. la)

yp(t) = Cpxp(t), z(t) = MpXp(t) + v(t) (1. l b)

E {w(t)w'r('0 } = 8(t--a:)W, E {v(t)vX(_)} = 5(t-'_)V, /? {w(t)v'r(_) } = 5(t-_)U(1. l c)

where xp _ R n-, f e Rn', w _ R n',

controllable and (Ap,Mp) detectable.

z,v,_ R n" and (Ap,Cp) observable, (Ap,Bp)

The vectors w(t) and v(t) are respectively zero

mean white noise characterizations of the actuator and sensor noise.

In control of large space structures, the locations of sen:;ors and actuators becomes a

critically significant "degree of freedom" in control design [14, 20]. Among over 60

more recent contributions to the SAS problem, only [4], [7], [10], [11], and [12] consider

noisy actuators (W, V nonzero). In all cases, the disturbances are modelled as Gaussian,

white, and uncorrelated (W, V diagonal, U = 0). Most of the SAS literature takes no

account of actuator or sensor dynamics. Two exceptions are McClamrock [19], and

Howell and Baxter, [6]. In [1] the authors extend the cost decomposition approach [2] to



accommodatenoise correlationbetweensensorand actuatornoise sources(W, V not

diagonal,U ;_ 0). A key conclusion in [1] is that the proper sensor/actuator selection and

placement can be drastically affected by noise correlation. For example, the deletion of a

noise source (by making an actuator or sensor noise free) may degrade performance

contrary to the usual expectations when noise sources are uncorrelated.

Very fast actuator dynamics may be neglected in stability considerations, [9]. A

more thorough discussion of the effect of actuator dynamics is given by Goh and

Caughey [8]. The analysis of [8] and [9] demonstrates that plant frequencies occurring

above the actuator bandwidth can lead to closed loop instability, even for co-located

sensors and actuators. Goh and Caughey do not address the problem of selection of

dynamic actuators. That is the goal of this paper.

This paper is organized as follows. First the system model is augmented to include

sensor and actuator dynamics. The closed-loop input and output costs are then developed

for the fully augmented system, and they are used to define expressions which reflect _he

effectiveness of each dynamic actuator or sensor in minimizing the cost function.

Finally, the method is illustrated by application both to small scale numcrical examples

and to NASA's SCOLE flexible space structure model. It is found that in the selection of

noisy actuators and sensors, finite dynamics can significantly affect selection results.

2.0 MODELING DYNAMIC ACTUATORS AND SENSORS

In [2] the results of Closed-Loop Input/Output Cost Analysis (CIOCA) were

developed and applied to the Sensor and Actuator Selection problem (SAS) for systems

of the form (1.1) under closed-loop control. In [11 the control f(t) is the vector of optimal

state estimate feedback controls:
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fJ

f(t) Gxe(t) G -1 T= , = -R Bp K. (2.1 a)

:_¢= Ar,x¢(t) + Bpf(t) + F[z(t) - Mr, x¢(t)], F = [PM_ + BpU]V -l , (2. l b)

0 = KAp + ATK - KBpR-IBTK + CTQCp (2.2a)

0 = [Ap - BpUV-tMp]P + P[Ap - BpUV-1Mp] T- P_V-1MpP (2.2b)

T_ BpUV-1UTB T+ BpWBp

which minimizes the cost function

V = E.,{ [[yp(t)l[2Q + [[u(t)l[2R} , Eo._lim E[.] (2.3)
t-----_,*

where x c _ R n" is the vector of state estimates. The conclusion from [1] for this problem

(1.1), (2.1) (2.2) is that when U c:0, the sensor/actuator selection results can be

drasticaKy different.

2.1 Adding Actuator Dynamics

First the system (1.1) is augmented to include stable, observable, controllable

actuator dynamics of arbitrary order.

xa = Aaxa -t-Ba(u+wu), (Aa,Ba) controlla01e (2.4a)

f = Cax a, (Aa,C _) observable, x a _ Rn', f _ Rrt" (2.4b)

Figure 2.1 presents schematic representations for actuator models of varying degrees of

complexity; Figure 2.1a represents the non-dynamic actuator, while Figure 2.1b

represents the general model for a dynamic actuator with white noise. Note that for the

non-dynamic actuator the noise w(t) is purely additive with the input u(t). In the case of

dynamic actuators the analyst may consider the actuator's output (into the system) to
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Figure 2.1a
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Figure 2.1: Actuator Models



include additive actuator output noise wf(t), or actuator command noise Wu(t ) which is

filtered by the dynamics of the actuator, or both. Both types of noise are assumed

possible in our development.

Augmenting the system states Xp

actuator states x a, we obtain:

of the original system (2.1) with a vector of

x=Ax+Bu+Dw, y=Cx, z=Mx+v=Zp

[x:] [wulx= x 'Y= ,w= w ,A= 0 A a

iwftEjUfu cp 0
W= . C= B=

Ur,, W ' 0 C '

, D=

(2.5a)

Bp0 B

[- -1

where f= Caxa, (Aa, Ca)is observable, and Re[_.i(Aa) j <0,

is controllable.

i=1,_,9 ... %. (Aa,Ba)

First note that since Xp is observable from yp, (i.e., (Ap,Cp) is observable) and x a is

observable from f (i.e., (Aa,C_) is observable) then from the definitions (2.5) x must be

obse_wable from y, that is:

(A,C) is observable (2.6a)

Also note that the actuator dynamics are assumed stable, so that the system (2.1) has

not 0een augmented with any unstable states. Therefore, detectability of (Ap,N1p)

together with stable A a yields

(A,M) detectable. (2.6b)



Finally, Theorem 1 statesthe conditions for controllability of the system (2.1)

augmentedwith actuatordynamics (2.5). Proof of the theorem is contained in the

Appendix.

Theorem1

Consider the controllable system

_p = Apxp + Bp(f+wf), (Ap,Bp) controllable (2.7a)

xp _ R nrv (2.7b)

attgmented with controllable and observable actuator dynamics of arbitrary order

Xa = Aaxa + Ba(u+wu), (Aa,Ba) controllable (2.7c)

f = Caxa, (Aa,Ca) observable, x a _ R nx° , f _ R nu (2.7d)

to form the composite system

= Ax+ Dw + Bu (2.7e)

[oI [w lA= Aa , D= 0 B , B= B ' ×= x , w= w (2.7f)

The system s,ates xp are controllable from u(t) if the number of poles minus the

number of zeros is the same for each individual actuator's tramfer fimction.

Remark 1: Note that full controllability of the augmented-system state vector x is

not guaranteed under the conditions of the theorem.

Remark 2: The conditions of the theorem are always met for first order dynamic

actuators, (assuming no direct input/output "feedthrough" for the

actuators), since each actuator will have one pole and no zeros.



Remark3:

Remark4:

As long as the original systemstatesxp arecontrollable throughsome

minimumsetof actuatorsmeetingthecriteriaof thetheoremabove,then

controllability of xp will bemaintainedwith theaddition of actuators of

any order and any number of transfer zeros.

Finally, note that the usefulness of the theorem stems from the fact that

by meeting certain mildly restrictive conditions, the actuator dynamics

can be guaranteed not to destroy controllability of the original system

states, regardless of the pole�zero locations of the plant.

2.2 Adding Sensor Dynamics

Next the system (2.5) is augmented to include stable, observable, controllable

sensor dynamics of arbitrary order.

Xs = Asxs + Bs(Mpxp+Vin), (As,B s) controllable (2.8a)

z = Csxs + Vout , (As,Cs) is observable, xs _ R _ (2.8b)

Re[_.i(As)]<0, i={1,2, ... ns} (2.8c)

Figure 2.2 presents schematic representations for actuator models of varying degrees of

complexity; Figure 2.2a represents the non-dynamic sensor, while Figure 2.2b represents

the general model for a dynamic sensor with white noise. Note from both eqn (2.8) and

Figure 2.2b that (similarly to the case of actuator dynamics), adding sensor dynamics

leads to the possibility of both sensor input noise and sensor output noise. The i_

sensor's input noise (Vin)i is filtered by the dynamics of the ith sensor, while the output

noise (Vout) i is purely additive with the sensor output. Both types of noise are assumed

possible in our development.
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The fully augmented system equations have the following form:

2 =Ax +Bu +Dw

y =Cx

z=Mx +v

D Bp0 0 B a ,A=

0 0 B

yT= [y:, fT] , wT=[w_, w_, vT],

0 A a , C = 0 C a

BsM p 0 A

B = B , V=Vou t , W= U* V , M =[00Cs]

L0J
The response yp(S) of the plant to the input f(s) is given by

yp(S) = Hp(s)f(s)

where

is the plant transfer function.

the input u(s) is given by

where

(2.9a)

(2.9b)

(2.9c)

V = Vou t

or C = [C 01

(2.10a)

Hp(s) = Cp(sI-Ap)-lBp. (2.10b)

The response Mx(s) of the actuator/plant system (2.9) to

Mx(s) = H(s)u(s),

H(s) = M(sI-A)-IB.

Finally, the response z(s) of the sensors to an input Mx(s) is given by

(2.11 a)

(2.1 lb)
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(2.12a)

where

Hs(s) = Cs(sI-As)-lBs (2.12b)

is the transfer function for the sensor dynamics. Minimal systems are controllable and

observable. Thus, given minimality of the plant/actuator system [(A,B) controllable and

(A,M) observable], then measurability of the full augmented system is guaranteed

[(A ,M) observable] if there are no pole/zero cancellations between H(s) and Hs(s).

2.3 Defining the Cost Function

With the properties of the augmented system established, optimal control design for

the augmented system is now considered. Recall that the standard LQG cost function

(2.3) for the unaugmented system (2.1) includes a penalty on the output regulation error

y(t), as well as a penalty on the control energy u(t). However, in the augmented system

(2.5), while the actuator command is given by u(t), the actuator response f(t) (contained

in the augmented output vector y) is distinct from u(t) due to actuator dynamics. A true

measure of control energy is more appropriately stated in terms of a weighted sum of the

variances of f(t) rather than of u(t). It can readily be shown, however, that even in the

presence of a weighting on the actuator outputs, f(t), some nonzero weighting on the

actuator inputs u(t) is necessary to avoid an infinite gain solution to the optimization

problem. For this reason, and in view of the relation of f(t) to the design goals as

discussed above, minimization of cost functions of the form

V = E.. [lly(t)ll_ + Ilu(t)llR2] (2.13)

and
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Q = diag[Qo,Qa ] ,

provides a stable optimal closed-loop solution.

Q > 0 (2.14)

3.0 SELECTION OF DYNAMIC SENSORS AND ACTUATORS

3.1 Closed-Loop Input/Output Cost Analysis

In order to write the expressions for the closed-loop input and output costs, it is first

necessary to put the fully augmented system, under closed loop steady-state optimal

state-estimate feedback control, in the following state space form:

_(t) = Ax(t) + Dw(t) (3. la)

y(t) = Cx(t) (3. lb)

where

V = E.. Vo(t), Vo(t) = y*(t)Qy(t),

xr = [xLxJ], sT= [yiv wT = [wr, vr]

[ A BG MJ [0 FO] [CO] [QA= FM A+BG-F ,D= ,C= ,Q=

(3.1c)

(3.1d)

o],W= U" (3.1e)

G = -R-iBTK, 0 = KA + ATK - KBR-tBTK + CTQC

F = [pMT+Du]V -i, 0 = [A-DUV-IM]P +P [A-DUV-tM] T

_ pMTV-1Mp + DWD T _ DUV-IuTD T

For the system (3.1) the output costs V_, defined by

(3.1f)

(3.1g)



arecalculatedasfollows [2]

VtY= (1/2){E**(bVo/_gyi)Yi I

v[= [¢XCQ]a

where X is the steady state covariance satisfying

0 = AX + XA T + DWD T

and where the output costs satisfy the cost decomposition property

Ev =v.
i=l

The input costs are defined by

Vi w = (1/2) {E _(cOVo/0Wi)Wi }

and are found from [21

where S satisfies

(3.2a)

(3.2b)

(3.2c)

(3.2d)

(3.3a)

Viw = [DTSDWI_i (3.3b)

0 = ATs + SA + cTQc (3.3c)

and where the input costs also satisfy the cost decomposition property

rlw

V_ = V. (3.3d)

The input and output costs represent the in situ contributions that the noise inputs

and the system outputs make in the cost function. We may also wish to know the amount

by which the cost function will be reduced if a noise input is eliminated. This amount,

AVi w, is defined as



avy = v - VRi (3.4)

where V m is the value of the cost function after the ira noise input is eliminated, (but the

controller is not redesigned) and AVi w is the cost reduction due to eliminating w i. A

positive value for AVi _ indicates that elimination of the ira input will reduce the cost,

while negative AVi _ indicates that a cost increase will follow noise elimination. It was

shown in [1] that the AVi w may be positive or negative in the presence of noise

correlation. Partitioning the matrices W and D facilitates direct solution for the cost

reduction [2], yielding

AViw w .= 2V i - d i SdiWii. (3.5)

The closed-loop covariance X may be written

where P satisfies eqn (3.1g) and where N satisfies:

0 = N (A +BG )r + (A +BG )N + FVF T (3.7)

Also, S has the following form

"K +L -L]S = -L (3.8)

where K satisfies eqn (3. If) and where L satisfies

0 = L(A-FM) ÷ (A -FM)TL + GTRG (3.9)

For notational convenience the steady state covariance X is partitioned as follows:
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I Xp X12 X13 ]X = [P+N! = X_2 X, X_[ (3.10)

[Xl xsJ

Using the notation of (3.10) and the special structure of the closed-loop system matrices

in eqn (3.13) we write the following expressions for the output costs

V yv= [CpXpC_Qp]ii i = 1, "- nyp (3.11a)

V:= [CaXaCTQa]ii i= 1, "'" nu (3.11b)

and for the input costs

V u = [GNGTR]ii i = 1, nu (3.1 lc)

Vi w = [D T(K+L )OW ]ii i= 1, "" nw (3.12a)

Viv_'= [DT(K+L)DW]nw+i,nw+i i= 1, • "" nz (3.12b)

V v_ = [FTLFVIii i = 1, • • • nz

and the input cost reductions

AV_ ¢ = [DT(K+L )DW - DTLFuTIii i = 1, "'" nw

(3.12c)

(3.13a)

AV i =[DT(K+L)DW T Tv, -D LFU ]nw+i,nw+i i = 1,"" nz (3.13b)

AVi TM = [FTLFV - FTLFV - FTLBU]ii. i = 1, • • • nz (3.13c)
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3.2 Dynamic Actuator Effectiveness Values

Now that the closed-loop input and output costs have been determined for systems

with dynamic sensors and actuators, it remains to use the CIOCA results to define

expressions which reflect the effectiveness of each sensor and actuator in the cost

function. This section defines the effectiveness values for dynamic actuators. The

approach taken in [1] and [2] for non-dynamic actuators was to subtract the contribution

the i_ actuator's noise in the cost function from the contribution of its control signal, and

to label this difference the "effectiveness" of the ith actuator, Vi act. That is,

vact= V u - AVi w (3.14)

This subtracts the "bad" from the "good" contributions of the actuator to measure its

effectiveness. The results of applying (3.14) to sensor and actuator selection for a range

of small and large scale examples in [2], [3], [4], [17] and [18] have demonstrated the

utility of this approach.

Extending the definition (3.14) for applicability to systems with dynamic actuators,

we proceed as follows. In (3.1) there are two noise sources associated with each

actuator: coeamand noise, w u, which is filtered by the actuator dynamics; and output

noise, wf, which is additive with the actuator output. Thus, the noise contribution

associated with the ith actuator is given by the sum of AVi _" and AVi _'.

The beneficial control cost for each actuator is not immediately evident. First,

recall that it is the actuator output fit), not its input u(t), which drives the system. Next,

note that the contribution of the i_ actuator's output in the cost function, V[, includes the

effects of noise Wui. That is, even in the open loop (u =-0), Vi f _ 0 for [Wu]ii > 0 with

dynamics. Hence, to define the beneficial (control) portion of Vif it is necessary to

subtract the portion of Vif which is due to noise. This can not be accomplished exactly,
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since the actuator command u(t) and the command noise w,(x) are correlated for t > x.

An approximation is obtained, however, by solving for Vif when u = 0 (that is, in the

open loop). We define the contribution of wui to V[ and the contribution of u i to V[ as

follows, using the open loop covariance of the actuator states X_X__:

[Vif] w = [C Xa.Xa._CTQa]ii

and

where X_asolves

[vif]u = Vi f - [Vif]w = [Ca(Xa--'Xa)CTQa]ii

0 = A XaXaXaXa_+ X_X_X_X__AT + BaWuB T .

(3.15a)

(3.15b)

(3.15c)

Finally, the input costs and the decomposition of the output cost Vi f are combined in

an effectiveness formula for dynamic actuators which is motivated by the results of [1]

and [2]:

vi [v/] u ,w w' Ave,,= ----i ----i • (3.16)

Note that in the absence of command input noise, [vif] w and Viw* are both zero. Also, in

the absence of actuator dynamics, fi(t) is equivalent to ui(t). Thus the expression (3.16)

reduces to the original effectiveness formula of [1] in the absence of actuator dynamics.

Note also that (3.16) is applicable whether or not the actuator noise signals are correlated

with other noise sources, and it is applicable to systems with actuator dynamics of

arbitrary order.

3.3 Dynamic Sensor Effectiveness Values

Unlike the actuator noise, (which has a direct path to the output, independently of

the conrollers influence) the noise associated with sensors reaches the system only



through the controller. Since the gains in the Kalman filter of the LQG controller

representan optimal trade-off of each sensor's(beneficial)measurementinformation

versusthe (performancedegrading)impactof its noise,thena AV_ of largemagnitudeis

indicative of a highly effective sensor. That is, the fact that a sensor's noise is being

allowed to heavily affect the cost means that its measurement information is even more

critical to performance. For this reason, the following effectiveness formula for non-

dynamic sensors, generalized to accommodate the possibility of noise correlation, was

presented in [ I]:

Vi _'a---6 IAVi"t . (3.17)

For dynamic sensors there are two possible noise inputs associated with each sensor.

As in the non-dynamic case, both noise inputs reach the system dynamics through the

Kalman filter. Thus a straightforward extension of (3.17) to dynamic sensors is

Vis_n = tAVe" t + IAV_°"'t . (3.18)

Note that this formula is applicable in the presence of sensor dynamics of arbitrary order,

and applies whether or not any of the noise sources are correlated with one another.

This section concludes with the suggestion that (3.16) and (3.18) provide effective

measures of tt,a contribution of each actuator and sensor in a closed loop optimal LQG

control (with sensor and actuator dynamics properly included).

4.0 SELECTION OF DYNAMIC ACTUATORS FOR SCOLE

In this section the actuator selection problem is solved for a model of NASA's

SCOLE (Spacecraft Control Laboratory Experiment) system. The SCOLE configuration

consists of a flexible antenna suspended from the Space Shuttle cargo bay by a 130 ft.



flexible beam (see Figure 4.6). The effectiveness values for proof mass actuators

(PMA's) located along the beam are calculated and plotted versus position for both

dynamic and non-dynamic actuators in order to evaluate the dynamic actuator selection

method and to determine the effect of actuator dynamics on our results.

4.1 PROBLEM DEFINITION

A certain 2-dimensional SCOLE model includes four flexible modes and no rigid

body modes [15-18]. Approximate open-loop mode shapes for the four flexible modes

are presented in Figure 4.7, and the results of an open loop modal cost analysis are

presented in Table 4.2. A detailed discussion of the model development is given in [16]

and [18]. The two sensors retained in the model (using the CIOCA method of selection

for non-dynamic sensors) are angular position and rate measurements located at the

center of mass of the reflector [18]. Since there are no accelerometers presents, then the

sensor and actuator noise is uncorrelated. Noise intensity data for the sensors is given in

Table 4.3.

The set of admissible actuators includes both a control moment gyro (CMG) located

at the reflector center of mass and a set of PMAs distributed along the flexible beam. The

actuator selection problem is to determine the optimal location for two PMA devices

along the beam. To this end, the admissible set of PMAs was defined as 20 actuators

spaced at distances of 6.25 feet apart on the 130-foot beam from a point 10.75 feet above

the shuttle end of the beam to a point 129.5 feet from the shuttle. The PMA locations are
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Table 42: 2-Dimensiona! SCOLE Elastic Medal Cost Analy_,is

Mode#

1

2

3

4

5

6

7

0

I0

11

12

13

Frequency (Hz)

.289E*(._3

.161E-d.)l

.497E+01

.12_E',4)2

237E_4)2

3S9E+-n2

5SOE*02

".;li,E+02

!O_E +03

• 13';E.,-03

.175E+O3

2'.5E*O3

25'-) E.,-<)3

.547E+01

.626E+01

I05E-OI

• ] gOE-O4

.201E-06

.692E 08

.420E-09

51>E 10

7-1SE- 1l

142E-11

.322E-12

_', iE-13

.2.13 E-13

!

Modal Cost j Percent Total

!

.-_66E*O2

.533E+O2

895E-01

153E-03

.171E-05

.590E-07

-IC_)E-OS

431F _)9

_:SE I0

121E-lO

27 :IE- 11

.72_E t2

.207E- t 2

T? pc

Table 4.3: Noise Specifications for SCOLE Actuators and Sensors

Ac:uators

Dyr_amic Noise Noi,e

Range linen ,::> Type I ,ten,,:ty

PMA

CMG

10 Ib .f'g_l !Ib) 2 Acceteromcters v. -- 0025 (de.g/see:) 2

10 s ft-lb IO,{R_. tft-lb):' Angulau" Po,, t:on IU " Ideg) !

00.4 _deg/sec) "l



thus selected by evaluating the relative effectiveness of each of the 20 PMA locations.

4.2 RESULTS FOR NON-DYNAMIC ACTUATORS

The PMA selection problem for non-dynamic actuators was solved first, for later

comparison with the dynamic actuator selection results. In all cases (dynamic and non-

dynamic) the actuator effectiveness values are calculated following controller design

which achieves a specified output variance and minimizes the amount by which the

actuators exceed their specified variances. This type of controller is designed by an

iterative selection of the control and output weights using the Output Variance

Assignment (OVA) algorithm (DeLorenzo and Skelton, [3]). The variance specification

for each actuator was equal to 10 times the intensity of its noise (see Table 4.3).

The actuator effectiveness values based upon standard Closed Loop Input/Output

Cost Analysis (CIOCA) [2] for non-dynamic actuators are presented in Figure 4.8. The

figure portrays PMA effectiveness results for four different controllers, each achieving a

different steady-state line-of-sight (LOS) error variance. The results provide a vivid

illustration of how the controller objectives can profoundly influence the actuator

selection results. For lower gain controllers (lower LOS error) the theory determines that

the upper tip is the most desirable PMA location. However, as the gain increases

(controller designed for smaller LOS error) the center of the beam becomes the optimal

location.

The results of Figure 4.8 are readily explained via modal analysis. The mode shape

figures for the four flexible modes retained in the 2-dimensional SCOLE model were

presented in Figure 4.7. Recall that mode #1, which accounts for 46.6 percent of the

open loop modal cost, has a maximum amplitude at the reflector-end tip of the beam (i.e.,

at 130 ft.). Mode number #2, which accounts for 53.3 percent of the open loop modal
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cost, has a maximum amplitude near the 90 ft. point. And mode #3, which accounts for

only approximately 0.1 percent of the open loop modal cost, has a peak amplitude near

the center of the beam.

Next note from Figure 4.8 that as the gain is increased in order to achieve a smaller

steady state LOS error variance, the most effective location for PMAs shifts from the tip

of the beam to the midpoint. This corresponds to a shift from the peak of mode #1 to the

peak of mode #3. The shift occurs even though with higher gain the noise in the PMAs

near the beam midpoint becomes the most detrimental to performance (Figure 4.9). In

fact, Figure 4.9 indicates the reason for the shift in optimal PMA location: with higher

gain the third mode becomes the least damped by the control of the CMG, and becomes

therefore a significant mode to be controlled by the PMAs. Figure 4.10 and Table 4.4

indicate the motion of the closed-loop eigenvalues from their open loop locations under

varying levels of gain (output performance).

Since the control cost of each PMA (Vi u = Eooriui 2) is equal to its effectiveness value

V act minus the cost contributic.n of its noise, Vi w, then it is clear from Figures 4.8 and 4.9

that the PMAs are being used primarily to control mode #3 (i.e., near the middle of the

beam). However mode #3 is the most lightly damped mode in the closed loop. This is

true in spite of the fact that in all cases the input variances of both the CMG and PMAs,

when normalized by their variance specifications, are of like order of magnitude (see

Figure 4.11).

The results demonstrate the interesting result that while the PMAs are being used at

a level similar to the CMGs (in relation to their specified variance levels), they

nontheless make a small contribution to the closed-loop modal damping. This claim is

verified by deleting all PMAs from the system and again using OVA to achieve a

specified LOS error of 0.1 (arc sec) 2, and comparing the resulting closed-loop modal and
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Table 4 4: Modal Characteristics of [A+BG] as a Function of OuTput Performance

Open .1015 .10 .095 09 .10 (deg) 2

Doop (deg) z (deg) 2 (deg) 2 (no PMAs)

col(r/s)

;t
t_ (sec)

1,8 3.14 3.14 314 31-1 3.135

.005 028 .027 .0255 .(125 .01

111 1 11.4 11.8 125 1274 31.9

o_2(r,'s)

v
_2

"__,(sec)

or3(rA)

t3(sec)

(o4(r's)

xa(sec)

Steady-State

Normalized

CMG

Variance

10.3 56. 62. 93 160 63

(_)5 .675 68 ._926 702 e,8

I t) ,1 .026 024 .015 (_)9 023

31. 29. 2,_9 28.8 28.8 28 9

{X)5 .0217 .0185 011 (K}9 .016

6.45 16 1.87 3,16 3,95 2.16

78 774 77 77, 77. 773

.005 ff)65 007 .0072 .f_)52 0068

2.56 2.0 1.86 1.8 2.5 2A9

-- 46.04 60.6 15,_6 591.1 652
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performance data with that obtained from a full set of PMAs and an output variance of

0.1 (arc sec) 2 (see Table 4.4).

4.3 RESULTS FOR DYNAMIC ACTUATORS

In this section we add actuator dynamics to the SCOLE model and then re-solve the

actuator selection problem solved above. The actuator dynamics are given in NASA's

original SCOLE document [15] to be first-order with a time constant of 0.1 seconds.

That is, for each actuator (both PMA and CMG) the response of the actuator fi(t) to its

input signal ui(t) is governed by

fi(s)/ui(s) = [ 1/(. ls+l)] (4.7a)

or

t'i = -10fi + 10ui • (4.7b)

There are several possibilities for the characteristics of the white noise associated

with the actuators; white noise may be an input to (and thus be filtered by) the actuator,

or it may be additive with the actuator output (thus unfiltered), or both. In this example

four different actuator noise models are considered. Recalling that the non-dynamic

actuators had additive white noise with intensity W, the following noise cases were

studied for dynamic actuators:

1. white actuator input noise of intensity W u = W;

2. white actuator output noise of intensity Wf = W;

3. both input and output noise, each white and of intensity W;

246



4. both input and output noise, each white and of intensity W/'2.

The sensors are assumed non-dynamic (without phase lag).

First we examine the effect of actuator dynamics on the maximal theoretically

achievable accuracy. From [3], the lower bound Yi on the steady-state variance of the ith

Yi* = [cPCTlli

output is given by

i = 1..... ny. (4.8)

The values of the lower bound on the LOS error for the fourth-order 2-D SCOLE model

under study were calculated for the four different actuator noise cases listed above, as

well as for the non-dynamic actuator model examined earlier. The results are shown

below.

Table 4.5: Maximal Accuracy for Different Actuator Noise Cases

Noise Case

Max. Acc.

(arc sec) 2

No Dynamics

.086921

Wu=W

.0691

Wf=W

.086921

Wf=Wu=W

.10072

Wf=Wu=W/2

.07926

From Table 4.5 it is clear that the addition of actuator dynamics along with

retention of the white noise input to the system states (actuator output noise only, Wf=W)

does not change the theoretical maximal accuracy; that is, y° is equal for the non-

dynamic and the Wf = W case. Also from the table, filtering of the actuator noise by

passing it through finite actuator dynamics clearly improves the maximal accuracy.

Finally it is noted that for case (3), W r = W u = W, the minimal LOS error is greater than

that obtained by all but one of the controllers in the non-dynamic case. Thus for

purposes of comparison only cases (1), (2) and (4) are studied in further detail.



For eachof the threeactuatornoisecasesa controller wasdesigned(using OVA)

which assignedthe steadystateLOS error varianceto 0.1 (arcsec)2 andminimized the

sumof thenormalizedactuatorvariancesamongthoseactuatorswhosevariancesexceed

their specifications(normalizedvariancesgreaterthanunity). For eachfinal controller,

thedynamicactuatoreffectivenessvaluesfor thePMAs areplotted in Figure4.12versus

theactuators'positionalongthe130ft. flexiblebeam.

For each of the noise casesthe most effective actuator location is toward the

reflector-end of the beam, with the highest effectivenessvalues corresponding to

actuatorslocated at the beamtip. Recalling the mode shapefiguresfor the open loop

flexible modes,theresultsin Figure4.12 indicatethatthe PMAs areusedby theoptimal

controllerprimarily for control of mode#1,which accountedfor 46.6percentof theopen

loop modalcost. It is interestingto compareFigure 4.12with the plot of effectiveness

valuesff,r non-dynamicactuators(Figure4.8); note that themosteffective non-dynamic

actuatorsfor thecontroller which achievedLOS error = 0.1 (arcsec)2werelozatednear

the centerof the beam(70 ft from the shuttle). Hence,the optimal beamlocations for

PMAs in controllerswhich are achievingthe sameoutput performanceareaffectedby

theactuatordynamics.

CONCLUSIONS

The Closed-Loop Input/Output Cost Analysis (CIOCA) method of sensor and

actuator selection (SAS) has been extended for application to systems with dynamic

sensors and actuators -- that is, systems in which the response of the sensors and

actuators to their inputs is not instantaneous but governed by deterministic dynamics.

The extended SAS method is applicable to systems in which the deterministic sensor and

actuator dynamics are of arbitrary order. Application to simple numerical examples
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demonstrates the utility of the SAS method. The examples also demonstrated that even

uniform sensor dynamics can affect the optimal selection of sensors. Application of the

actuator selection method in detail to NASA's SCOLE space structure demonstrated that

even uniform actuator dynamics can affect the optimal selection of actuators.
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Proof of Theorem 1

Let cx = (nxp+nXa). The composite system (2.7e) has a controllability matrix

W c E R _t×(wnu) of the following form

[Wcll 0 BoCaB a (ApBoCaBa+BoCaAaBa)

Wc=/!LWc2j = Ba AaBa A2Ba

cx-2 or-3
• .. (Ap BoCaBa+Ap BoCaAaBa+'"+BoCaAaa-2Ba)

... aaa_lB a (A.1)

Now noting that CaAiBa = M i is the ith Markov parameter for the system of actuator

dynamics (2.7c,d), Wcl may be rewritten

Wcl = [0 B,,M o (ApBoMo+BoM1) (A2BoMo+ApBoMI+BoM2) ...

a-2 a-3
• ..(Ap BoMo+A_ BoMl+...+BoMct_2)] (A.2)

The columns of Wc span the controllable subspace of the composite system. Linear

independence of all the rows in Wc implies full controllability of the composite system.

However, controllabiLity of the original s;, stem states, Xp, requires only that file columns

of Wct span the state space for x o. This in turn will hold if and only if the matrix Wcl has

rank nXp.

The proof of the Theorem begins with the proof that (A.3) implies (A.4):

{detMk_:0, Mi=0, i=0, 1..... k-l} (A.3)

rank[Wet ] = nx. (or ratine space of Wet has dimension nx?

Note that the last block of We1 has the form

or-2 or-3
W,..l(a) = (Ap BoMo+A p BoM l + • • • + BoMnt_ 2)

Now let k < o_-2 be the index of the first nonzero Markov parameter, M k.

(A.5)

(In this case



the first k+l blocks of Wet are zero.) Next, use is made of two results from linear

algebraCR [K]" denotes"rangespaceof K"),

{detK _e0} _ {R [JK] = R [J] } (A.6a)

R [J+K] c R [J] + R [K] (A.Tb)

(where "c" means "is contained in") to demonstrate the following results which hold

when M k is nonsingular

R [Bo] = R [BoMkl (A.8)

R [B o ApBo] = R [Bo] + R [ApBo]

= R [BoMk] + R [ApBoMk]

= R [BoMk] + R [ApBoM k + BoMk+l-BoMk+]]

c R [BoMk] + R [ApBoM k + BoMk+ 1] + R [BoMk+l]

= R [BoMk] + R [ApBoM k + BoMk+l]

that is,

•. R [B o ApB o] c R [BoM k ApBoM k + BoMk÷ 1]

Eqns (A.8) and (A.9) lead by induction to the main result

R [B o ApB o • • • Aoa-k-2Bo] c R [BoM k ApBoM k + BoMk+ 1 • • •

A_-k-2BoMk + • • • BoMc__z]

• A cL-k-2R 1
R[B oApB o "" ..p -o, CR[Wcl]

(A.9)

(A.10)

L
!



Condition (A.3) leads to (A.10). Thus, given (A.3) together with (Ap,Bo)

controllable, the columns of We1 are guaranteed to span the nxp-dimensional state space

for xp as long as

that is, as long as

ct-k-2 >_nXo-1 .

k <_nx a - 1. (A.11)

In fact, the index k of the first nonzero Markov parameter for the system (2.7) will

always satisfy (A.11). To show this, simply note that by observability of (A_,,Ba), the

observability matrix Woa for (2.7) has full column rank:

From (A. 12),

Thus,

rank(Woa ) = nx a (A. 12)

{WoaBa = 0} =:_ {Ba= 0} =:_ {Contradiction of (Aa, B a) controllable}

Wo. B, tMLM,r, T 1"= .... Mnv-l] _ 0

and so the validity of (A.11) is guaranteed for (2.7) completing the proof that

{ [(Ap,Bo) controllable] & [M k _ 0, M i = 0, i = 0, 1 ..... k-l]}

=:_ {xp controllable u}

(A.13)

(A.14)

(A.15)

restrictive conditions the actuator dynamics can be guaranteed not to destroy

controllability (f the original system states Xp, regardless of the pole/zero location for the

plant.

The usefulness of (A.15) stems from the fact that by meeting certain mildly



It remains to prove the equivalence of the condition (A.3) and the requirements on

the individual actuators' numbers of poles and zeros. First, note that since each actuator

is a single input, single output (SISO) system, then the Markov parameters M i for the

lumped actuator dynamics (2.7) are diagonal matrices of the following form:

M i = diag [mli, m2i, m3i ..... mnui] (A.16)

where mji is the (scalar) ith Markov parameter for the Jth actuator. Thus the condition

(A.3) is met if and only if the index i of the first nonzero markov parameter is equal

among all the actuators.

The input/output transfer function for any n_ order SISO system has the form:

T(s) = (cn_lsn-l+Cn_2S n-2 + "" • + Co)/(sn+dn_lsn-l+ "" • +do) (A.17)

The scalar Markov parameters m i for the SISO system with transfer function (A.20) may

be shown to be given by:

mo = Cn-1

m I = Cn_2 - dn_lrl o

n 2 = Cn_3 - dry_2 no-'xln_ln 1

n n = co - d I ---d2n 1 .... --tin_inn__2

(A.18)

From (A. 18), n i is the first nonzero Markov parameter for a system when the

number of zeros in its transfer function is

z = n - i - 1 (A. 19)

Letting nj and zj equal the number of poles and zeros for the Jth actuator, respectively,

(A.19) yields the conclusion that



{det M k # 0, M i = 0, i = 0, 1 ..... k-1 } _ {(nj-zj) = (ni-zi)_ / ij,e (1,2 ..... nu)} (A.20)

Thus it is concluded that

{(nj-zj) = (ni-zi)_ / i,j,e (1,2 ..... nu)} :=_ {Xp is controllable u}. (A.21)
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SCOLE 87/2

ABSTRACT

The purpose of this presentation is to show that it is possible to use

nonsmooth optimization algorithms to design both closed-loop finite

dimensional compensators and open-loop optimal controls for flexible

structures modeled by partial differential equations.

An important feature of our approach is that it does not require modal

decomposition and hence is immune to instabilities caused by spillover

effects. Furthermore, it can be used to design control systems for struc-

tures that are modeled by mixed systems of coupled ordinary and partial

differential equations.
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DESIGN OF STABILIZING FEEDBACK-SYSTEM COMPENSATORS

The optimization-based design of finite dimensional compensators for

systems modeled by coupled systems of ordinary and partial differential

equations is made possible by a generalization of the following necessary

and sufficient stability test for linear systems described by ordinary

differential equations.

THE DYNAMICAL SYSTEM

Consider a parametrized, linear, time-invariant, interconnected, finite

dimensional dynamical system, Z(p), described by a set of state equations:

_(t) = A(p)xi(t) + B(p)u(t),

y(t) = C(p)x(t) + D(p)u(t),
(1)

We shall denote the characteristic polynomial of E(p) by Z(s,p) and

assume that the coefficients of Z(s,p) are continuously differentiable in p.
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S-STABILITY

When, it is desired to ensure not only exponential stability of a closed

loop system, but also to exercise some control over the location of its

poles, it is convenient to make use of the following definition of S-

stability.

Definition (S-stability)." Consider a linear, time-invariant, finite dimen-

sional dynamical system Z of the form (1). Let S be an open unbounded

subset of C which is symmetrical with respect to the real axis, and such

that ScD C+, where S c is the complement of S and C+ is the closed right

half of the complex plane.

We say that the system Z is S-stable if all the zeros of its charac-

teristic polynomial are in S. •
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A MODIFIED NYQUIST STABILITY CRITERION

Theorem : Let Sc C be as specified in the Definition and let Bc C be

any simply connected set satisfying (0,0) 4_B. Suppose that

D(s,q) e C[s] is a parametrized polynomial of degree N, whose

coefficients depend on the parameter vector q e 1RnD in such a way that

for every 96(s)e PN satisfying Z[96(s)]cS, there exists a qx e IRnD such

that

(i) Z[D(s,qx)]cS, (2a)

(ii) Z(s)/D(s,qx ) e B, _4 s _ _)S. (2b)

Then, given a polynomial X(s) _ PN, Z[X(s)]cS if and only if there exists

a qx e IRnD such that (2a,b) hold.

26"3
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PROOF OF MODIFIED NYQUIST STABILITY CRITERION

(- - =>) Suppose that Z[_(s)]cS. Then, by assumption, there exists a

qz _ l_'nt' such that (2a), (2b) hold.

(<- - - ) Next, suppose that (2a), (2b) hold. Then, because B is a sim-

ply connected set which does not contain the origin, the locus traced out

in the complex plane by X(s)/l)(s,qz), for s _ _S, does not encircle the

origin. It now follows from (2a) and the Argument Principle that

Z[x(s)]cS. []

Comment : It is clear from the Theorem that an acceptable parametri-

zation of the polynomial D(s,q) depends on the shape of the set S and the

choice of the set B. A further requirement is imposed by semi-infinite

optimization: the parametrization must be such that it is easy to ensure

that the zeros of D(s,q) are in S. []
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OPTIMIZATION-BASED CONTROL SYSTEM DESIGN

Ul C u2 _ Y

I

SYSTEM DYNAMICS

d
m

dt [:0:1Z2 = Z_

z_ 0- -4 zi,

4

1= 023
Ly_ '

Zb

_D

L,D

+ 0 0 u? I ,
O1

ix x2][u ][,i]E,5,61[z ]z_: = x_,,, ,,_ ' y? = x,x_ z_ •

DESIGN VECTOR: x = [x ],x2,...,x 8].
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DESIGN CRITERIA

1. The feedback system must be exponentially stable.

" The system should have a good step input response.d,,.

3. There should be little interaction between channels.

4. Plant should not be saturated by command input effects.

5. System should have high output disturbance rejection.
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MODIFIED NYQUIST STABILITY CONSTRAINT

Sq
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CHANNEL INTERACTION CONSTRAINT

OI0

O.DI

©._

0._

0
Fro.4_lra,_ L't.ad,'_c)

0.10,

O.Ol,

0.00'

O,[X),

- . _ O.OC
I"0 JiO0 IP

Magnitude of Hy:rT(jt.o, X)

i

o a _
IFreo._ley Ot _Jlkc)

Magnitude of Hy,r:(j_, x)

COMMAND INPUT SATURATION CONSTRAINT

10

Smi -_ ...______f- i
! : ! .

0 _

i

|

i

g i _o
lrn_q_l_ fit adtSac)

Singular Values of Hu_r(j_" , x)
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OUTPUT DISTURBANCE SUPPRESSION CONSTRAINT

Must accept some disturbance amplification outside 'operating

bandwidth:

g[H_d(jco, x) _<1.05, _' to e [1,1000]

COST: OUTPUT DISTURBANCE SUPPRESSION

Suppress disturbance effects inside operating bandwidth:

f(x) A= max g[HydQto,x)
to e [0.001,1]

0q

0,

O

t

i

i

.,t .--d• • ..... g......

;

!
1

O

Irr_lr_ (l-_rkc)

i

Singular Values of Hyd(jo3, x)
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INTEGRATED STRUCTURE-CONTROL-SYSTEM DESIGN

BEAM SHAPE AT TIME T

/
I
I
i
I
I
I
I

-4

""_"_W3(t,xo )

W2(t,x O)

Vibrating Beam
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DYNAMICS

• GENERAL MODEL: Euler-Bernoulli Model, Kelvin-Voigt or

Proportional Damping, Coupled Axial and Flexural Linear PDE's.

• Control Forces Fi(t), Actuator Positions a i, Sensor Positions s i.

• SIMPLIFIED MODEL: Decoupled Motion Formulation:

mutt(t , x) + Clutxxx x + Eluxxxx(t ,
nl

x) = _ bi(x- ai)Fi(t) .
i=l

1 1

yi(t) = J ci( _ -si)u(t , /_)d_ or yi(t)= f di( _ -si)u(t , _)d_.

0 0

BOUNDARY CONDITIONS

u(t,0) =0, Ux(t,0)= 0, Juttx(t, 1)+CIutxx(t, 1)+Eluxx(t, 1)=0,

M Utt(t , 1) - Clutxxx(t , 1) - Eluxxx(t, 1) = 0.
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DESIGN CRITERIA

1. The feedback system must be exponentially stable.

2. Control system compensator should be finite dimensional.

3. Actuators should not be saturated by command input effects.

4. System should have high mechanical disturbance rejection.

5. Average power use should be low.

6. Structure weight should be low.

7. Structure should remain in elastic range.
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DESIGN VARIABLES

• CONTROL SYSTEM COMPENSATOR

(i) Coefficients of compensator differential equation.

• STRUCTURE

(i) Positions of actuators and sensors.

(ii) Parameters of damping devices.

(iii) Parameters of composite materials.

(iv) Parameters determining shape of structure.
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PRELIMINARY RESULTS

lo The control system can be stabilized using a finite dimensional

proportional-plus-integral controller which ensures good distur-

bance rejection. The use of our modified Nyquist stability cri-

terion in the design of a stabilizing controller requires only

evaluations of the system frequency response. Since the frequency

response at a given frequency can be computed in some cases by

formula and in the more general cases by solving two-point linear

boundary value problems, there is no need for modal decomposition

and hence there are no spillover effects. As in the finite dimensional

case, time and frequency domain constraints can be treated simul-

taneously and, in an integrated design approach structural parameters

and constraints can also be introduced into the optimization problem.

e If a sequential design approach is used, an infinite dimensional com-

pensator can be designed using an H** frequency domain constraint

formulation which results in a convex optimization problem and

automatically ensures exponential stability with stability margin.

. An infinite dimensional controller designed as above can be

approximated by a finite dimensional controller without spillover
effects.

. A special semi-infinite optimization algorithm has been developed

which is highly effective for design with H** frequency domain
design constraints.
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A FLEXIBLE ARM OPTIMAL SLEWING PROBLEM
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THE DYNAMICAL SYSTEM

Hollow aluminum tube: one meter long, 2.0 cm diameter, 1.6 mm

thick. Attached mass weighs 1 kg. We assume that motor torque u(t) can

be directly controlled.

Standard Euler-Bernoulli tube equations with Kelvin-Voigt visco-

elastic damping:

mwtt(t,x) + Clwtxxxx(t,x) + EIwxxxx(t,x) - mg22(t)w(t,x)

= - mu(t)x, x _ [0,1]
(la)

with boundary conditions:

w(t,0) = 0, Wx(t, 0) = 0, Clwtxx(t, 1) + EIwxx(t, 1) = 0. (lb)

M(f22(t)w(t, 1) - wtt(t, 1) - u(t)) + Chvt_xx(t, 1) + EIwxxx(t, 1) = 01,c)

where w(t,x) is displacement of tube from shadow tube (which remains

undeformed during the motion), u(t) is motor torque, and f2(t) rad/sed is

angular velocity. Above: m = .2815 kg/m,

E = 6.89x109 pascals, I = 1.005 x 10-8m 4,

C = 6.89x107 pascals/sec.,

The tube is very lightly

damped (0.1 per cent ).
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THREE OPTIMAL SLEWING PROBLEMS

P1 :

Minimize the time required to rotate the tube 45 degrees, from rest to

rest, subject to the torque not exceeding 5 newton-meters.

P2 :

Minimize the total energy required to rotate the tube 45 degrees, from

rest to rest, subject to the torque not exceeding 5 newton-meters and

the maneuver time not exceeding a given bound.

P3 :

Minimize the time required to rotate the tube 45 degrees, from rest to

rest, subject to the torque not exceeding 5 newton-meters and an

upper bound on the potential energy due to deformation of the tube

throughout the entire maneuver.
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THE DYNAMICAL SYSTEM

MATHEMATICAL FORMULATION OF THE THREE PROBLEMS

* To avoid technical problems associated with variable intervals and

problems due to discretization, augment dynamics by one state variable

and introduce scale factor T > 0 so that problem becomes defined on nor-

malized time interval [0,1], with T also equal to final time.

• Tube is at rest when the total energy = energy due to rigid body

motion + energy due to vibration and deformation = 0.

(i) To ensure a slewing motion of 45 °, we define

g](u, T) A__(O - 1-I/4) 2 (2)

(ii) Rigid body energy at final time is proportional to the square of the

angular velocity.

g2(u T) A _(T)2 (3)
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(iii) Kinetic energy due to tube vibration at normalized time 1 is

1

g3(t,u ) A m! wt(1 x)2dx
9 •

2
(4)

(iv) Potential energy due to tube deformation at normalized time 1 is

g4(1 ,u ) A_
E1 1

[ Wxx(1, x)2dx.
2

(5)

• Potential energy due to deformation of the tube at normalized time t:

P(t,u) A_
E1 1

2 _ Wxx(t'x)2dx"
(6)

(v) To limit tube deformation for all t E [0,1] we define

gS(u,T) A= ;

0

[max { P(t, u) - fit), 0 } ]2 (71

(vi) To ensure slewing time does not exceed Tf seconds, we define

g6(u,T ) A T Tf (8
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FINAL PROBLEM FORM

P1 : min { g°(u,T) lgJ(u,T)-e<0,j_ 11,2,3,4 } },
Tel_,u_G

where g°(u,T) A= T,P_+ A= {_/_ _1_/>0 } and

G A__ { u ¢ L**[0, 1] I lu(t)l < 5, t _ [0,1] }.

P2: min { g°(u,T) lgJ(u,T)-e<0,j _ {1,2,3,4,6 } },
Te IR+,u_ G

where g°(u, T) A__ ilu(t)ll2 dt.
0

P3" min { g°(u,T) lgJ(u,T)-e<0,j e {1,2,3,4,5 } },
T_ IK+,uE G

where g°(u, T) A= T.

• All gJ are continuously differentiable in L**[0,1].
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THE DYNAMICAL SYSTEM

COMPUTATIONAL RESULTS

IMPLEMENTATION. Because we cannot solve the system PDEs

exactly, we cannot evaluate gJ(u,T) or VgJ(u,T) exactly. Furthermore,

since u is an infinite dimensional design vector, it can only be entered

into a computer in discretized form. We use an implementable algorithm

which adjusts integration precision and control discretization adaptively.

To discretize the PDE in space, we use the finite element method. Since

the PDE is fourth order in space, it is necessary to use elements of at least

second order. We have chosen Hermite splines as basis elements. The

input u _ G is discretized in time and Newmark's method is applied to

evaluate the resulting system of ordinary differential equations.

LINEARIZATION. The results presented are for the case in which

the f_2(t) terms are neglected in equation (1). Similar results have been

obtained by performing experiments when the f_2(t) terms are included.
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OPTIMAL CONTROL FOR MINIMUM-TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY

4.00

1.00

o.60 o._o o.so o.90

Normalized Time



SCOLE 87/25

TIP DISPLACEMENT FOR MINIMUM-TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY

Meters

• o.ooi

o.oo o.'_o o.so o.9o 1.oo
o zo o._ o._o o.4o Normalized Time
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DEVIATION FROM SHADOW BEAM FOR MINIMUM-TIME

PROBLEM WITH TORQUE CONSTRAINTS ONLY

w(t,x) (meters)

z 0.001
6

t - 0.419 s

0.00

)00 0.10 030 0.40 0.90
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CONSTRAINT VIOLATION FOR MINIMUM-TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY:

DISCRETIZATION EFFECTS

PSI

6.00 , • 0.iX

3.00

4.00

3.00

2.00

!.00

0.O0

p.00 0.10

Iteration
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OPTIMAL TORQUE

FOR MINIMUM-CONTROL-ENERGY PROBLEM

WITH TORQUE CONSTRAINTS AND FINAL TIME < 0.8 SEC.

Control

5o0

4.00

l.OO

-I.oo
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OPTIMAL TORQUE

FOR MINIMUM-CONTROL-ENERGY PROBLEM

WITH TORQUE CONSTRAINTS AND FINAL TIME < 1.0 SEC.

3.00

2.00

1.00

-5.00 • 1

Control
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POTENTIAL ENERGY FOR MINIMUM TIME PROBLEM

WITH TORQUE CONSTRAINTS ONLY

Curve A is potential energy

Parabola B is deformation constraint.

Potential Energy

40 0O • 0.001

A

3G00

B

20.00 _ _

l

0.00 ....................................... 7::: . , . . l .

0.00 0.10 0_0 0.30 0.40 0.30 0.60 0.70 0.|0 0.90 1.00

NormalizedTime
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POTENTIAL ENERGY FOR MINIMUM-TIME PROBLEM

WITH TORQUE AND POTENTIAL ENERGY CONSTRAINTS

Curve A is potential energy

Parabola B is deformation constraint.

Potential Energy

40.00 x 0.001

310.00

20.00

I0.00

0,00

\

\

B

0.00 0.10 0.20 0.30 OAO |.50 0.60 0.70 0.80 0.90 l.OO
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OPTIMAL CONTROL FOR MINIMUM-TIME PROBLEM

WITH TORQUE AND POTENTIAL ENERGY CONSTRAINTS

Note: The optimal final time is 0.8177 seconds, an increase of only 3.7

percent over the solution of P1.
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DISCOS SIMULATION:

BODIES CONNECTED BY HINGES

FINITE ELEMENT MODEL OF BEAM PROVIDED BY NASTRAN

REFLECTOR (RIGID), BODY 3

i

X HINGE 2

ACTUATOR

ON BEAM

BEAM (FLEXIBLE),
BODY 2

ACTUATOR

ON BEAM

X

SHUTTLE (RIGID), BODY 1

HINGE 1 Z

HINGE 1 CONNECTS SHUTTLE
BODY TO INERTIA SPACE

Fig. 1--Scole Configuration
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COMBINED PROBLEM OF SLEW MANEUVER CONTROL

AND VIBRATION SUPPRESSION

Y. P. Kakad

Dept. of Electrical Engineering
University of North Carolina at Charlotte

Charlotte, NC 28223

ABSTRACT

In this paper, the combined problem of slew maneuver control
and vibration suppression of NASA Spacecraft Control Laboratory
Experiment (SCOLE) is considered. The coupling between the rigid
body modes and the flexible modes together with the effect of the
control forces on the flexible antenna is discussed. The nonlinearities

in the equations are studied in terms of slew maneuver angular velo-
cities.

INTRODUCTION

In this paper, the analytics for the combined problem of slew maneuver and

vibration suppression are developed. It is assumed that the slew maneuver is per-

formed by applying moments on the rigid shuttle and the vibration suppression is

achieved by means of forces on the flexible antenna and the reflector. The slew

maneuver is considered to be an arbitrary maneuver about any given axis [16]. The

effect of slew maneuver angular velocity on flexible modes is studied by examining

the spectral norm of the matrix term associated with the coupling between the

rigid-body modes and the flexible modes. Also, the kinematic nonlinearities are

further analyzed in terms of the matrix spectral norm variation of the correspond-

ing term with respect to slew maneuver angular velocity.
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ANALYTIC

The slew maneuver is defined as

k__- Axis about which the slew maneuver is performed.

- The slew Angle

to- The angular velocity of the orbiter in the inertial frame.

The four Euler parameters can be defined as

E1 -- _klsin {

E2 _- _.2sin 2_"

E3 -- _.3sln{

(1)

The four Euler parameters can be related to the angular velocity components

of the rigid assembly as

E1

E2

E3

E4

E1 E4 --E 3 E2

E2 E3 E4 --E 1

E3 --E 2 E 1 E4

E4 --E 1 --E 2 --E 3

l°r6O1

6O2

¢.o3

(2)

The slewing maneuver can be given in terms of the following equations [ 16]

Iocb+ Az_ = G_(t )+N2(__)

A2rcb + A_ + B_ + K_L =O(t)

(3)

(4)

where,

G_(t ) is the net moment applied about the mass center of the orbiter and is
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given by the following equation (figs. 1 & 2)

G__(t) = G_o(t) + (Z_+ a_)xE2 (5)

Also, Q (t) represents the generalized force vector which is given by the following

equation

_2(t ) =

m

_, ( Qyx_(t ) + Qjyt(t )) + Qx, + Qy_ + Qq, t
]=1

E ( Qj_(t ) + Qjy_(t )) + G, + (2y_+ Q_
]=i

°oo

r/l

X: ( Q_x,(t) + Q_y,(t))
1=1

+ Qxi + Qyi + Q qJt

(6)

where, the generalized force components are given as

L

Q)., = f Fjx (z ,t )8(z -z) )¢b._(z )dz (7)
0

L

Q., = fF. (z,t)8(z-z] )(by,(z)dz (8)
0

and

Qj q,,(t) = 0 (9)

Here, Fix (z ,t ) is the x component of the concentrated force applied at location j

on the flexible antenna and Fjy is the y component of that force.

Also,
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Qyt (t) = Fzy (t)_by i (L) (10)

Q_ (t ) ----Mk(t )_t(L )

Here, F__2 is the force applied at the reflector C. G.

Thus,

Mqj(t ) = F2xry + F2yr x + M2_ (11)

The location of reflector C. G. is given by coordinates (r x ,ry) and M2¢

represents the external moment applied at the reflector C. G. Also, the nonLineari-

ties N 2 can be expressed In terms of pure rigid body kinematic nonlinearity and

the nonlinear coupling term between the rigid-body modes and the flexible modes.

m_2=A4 + ( (12)

(a) Slew Maneuver

If only a slew maneuver is to be considered, then O(t ) _O and F 2 _-0. and

only moments are applied at the orbiter C. G. However, the angular velocity vector

to, is nonzero during the maneuver and the flexible modes will be excited. This

effect of coupling between the rigid-body modes and flexible modes can be obtained

by evaluating A 5 which depends on the angular velocity vector. In figure 3, using

the matrix spectral norm as a measure, the coupling effect is studied as a function

of slew angular velocity. The first ten flexible modes are considered for this

analysis. The kinematic nonlinearity is also obtained in terms of matrix spectral

norm as a function of co. This analysis can be utilized in the linearization of the

slew maneuver dynamical equations. An example of this is shown in figure 4

which is a single plane slew maneuver. In this case, it is almost a linear relation-

shlp in terms of a single angular velocity component.
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(b) Slew Maneuver Control and Vibration Suppression

If it is desired to design control systems for the simultaneous task of slew

maneuver control and vibration suppression, then equations (3)-(11) should be

used. It can be seen that vibration control forces also affect the slew maneuver

J _ • Jl 1 • J ,

Thus, these equations would suggest that in order to achieve control efficiency

and to minimize the line of sight error in minimum time, it may be necessary to

synthesize control systems for the combined problem of slew maneuver and vibra-

tion suppression.
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Figure 2- Vectors in Body-fixed Frame
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Robust Model-Based Controller Synthesis for the SCOLE Con_Iguratlon

E.S. Armstrong S.M. Joshl E.J. Stewart

NASA Langley Research Center

Hampton, VA 23665

ABSTRACT

The design of a robust compensator is considered

for the SCOLE configuration using a frequency-

response shaping technique based on the LQG/LTR

algorithm. Results indicate that a tenth-order

compensator can be used to meet stability-

performance-robustness conditions for a 26th-order

SCOLE model without destabilizing spillover

effects. Since the SCOLE configuration is

representative of many proposed spaceflight

experiments, the results and design techniques

employed potentially should be applicable tr, a wide

range of large space structure control problems.

Introduction

Large space structures (LSS) have many properties

that make them difficult to analyze and control

[i]. They are mathematically modeled by computa-

tlonally difficult partial differential equations

or hlgh-order, lumped, ordinary differential

equations obtained through finite element methods.

LSS have many low and closely spaced resonant

frequencies, a number of which typically fall

within the controller bandwidth. In LSS, vibra-

tional issues must be treated as a flrst-order

effect; it is this characteristic of the ]_SS

control problem that most distinguishes it from

spacecraft control problems of the past. Addition-

ally, inherent damping is low and/or improperly

modeled. Coupled with stringent operational

requirements for orientation, shape control, and

vibration suppression, these properties present an

unconventional and unresolved control design

problem to the system analyst.

A fundamental issue to be dealt with in any LSS

control problem comes from the large amount of

modeling error occurring in finite element models

of such structures. In general, inaccuracy of

modal data, such as elastic frequencies and mode

shapes used to form coefficient matrices of the

dynamic models, increases with increasing modal

frequency. Hence, a frequency-dependent constraint

* George Washington University, Hampton, VA

is inherently imposed on the design process _, that

stabilization and performance requirements must De

met without allowing the input control energy to

"spill-over" and excite and destabilize the lightly

damped, poorly modeled high-frequency dynamics.

At NASA's Langley Research Center, a LSS config-

uration known as the Spacecraft Control Laboratory

Experiment (SCOLE) was conceived for the purpose of

evaluating and comparing large space structure

control and identification concepts [2]. The SCOLE

configuration (shown schematically in Figure i)

consists of a 130-foot flexible beam anchored at

one end to the cargo bay of the space shuttle with

an antenna reflector connected to the opposite end.

The center of mass of the reflector is offset from

the attachment point. The SCOLE configuration is

representative of many proposed space flight exper-

iments and space-based antenna systems. Control

inputs are available from torque actuators located

on the orbiter and force actuators at the reflector

center. Attitude sensors are located at the

reflector center. A typical SCOLE control task

is to slew or change the llne-of-slght of the

antenna rapidly and damp any induced structural

vibrations to the degree required for the precise

pointing of the antenna.

In this paper we consider a SCOLE large-angle

slewing maneuver to have been completed and attack

the problem of designing a model-based compensator

to attenuate residual structural vibrational motion

and antenna llne-of-sight error. The SCOLE mathe-

matical model is first discussed followed by des-

criptions of the design objectives and the compen-

sator design approach. Finally, results from the

application of the design methodology to the SCOLE

problem are presented.

Mathematical Model

The basic dlstrlbuted-parameter mathematical model

of the SCOLE configuration is described in [2],

while nonlinear and linear ordinary differential

equation models are found in [3] and [4], respec-

tively. A linear finlte-element model consisting

of three rigid rotational modes and the first ten

structural elastic modes is used in this study. A

state-space realization of the modal model has the
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form

where

a_d

x F - AFX F + BFU

YF - CFXF

aF-dlag(A R. a z)

6x6

I 2 i0
AE - dlag( AE, AE ..... AE )

[0 ljt 2

AE " "_t "2fl_t

2x2

(l)

(2)

(3)

(4)

(5)

(6)

for (i-I ..... I0). Equation (4) describes therigld

body contribution and equations (5) and (6) des-

cribe the elastic contribution for ten vibrational

modes of frequencies _I' (I - I ..... I0). A unl-

form damping ratio of fi " f " 0.003, (i - 1 .....

10), is assumed. The eigenvalues of AE are given

mathematically by

(7)
and are shown in Table I.

Five control inputs are generated using three

torque actuators (one per X,Y,Z axis) on the orbi-

ter and two force actuators (X and Y directions in

Figure I) at the reflector center. Three attitude

sensors (one per axis) are located at the reflector

center. Sensor and actuator dynamics were not

included in this study. Rigld-body inertlas,

mode shape and slope data from the finite element

analysis combine to define the control effec-

tiveness matrix B F and output response matrix C F.

Analysis of (I) and (2) verifies that the system is

completely controllable and observable. Attempts

to reduce the number of control variables to the

number of outputs retained controllability and

observabillty but, in each three-control input

combination, introduced llghtly-damped, low-

frequency transmission zeros [5] into the model.

Since the presence of such transmission zeros has

been demonstrated to reduce system performance in

large space structure controller designs [6], the

compensator was designed with the original five

inputs and three outputs. However, in order to

avoid numerical ill-condltlonlng brought about by

the different physical characteristics of forces

and torques, the inputs were scaled so that the

frequency response of the largest (a(j_)) and

smallest (_(Ju)) singular values of the transfer

matrix of (i) and (2), denoted by GF(JW), were

nearly equal at low frequencies (as shown in Figure

2).

Design Objectives

The design objectives of this study are to produce

a multivariable, model-based, feedback compensator

operating on attitude sensor data which will gener-

ate force and torque inputs to stabilize the rigid

body modes; enhance the stability of lightly

damped, low-frequency modes without destroying the

stability of higher-frequency modes; meet pre-

scribed closed-loop performance (bandwidth) speci-

fications; and possess some degree of stability

robustness to unmodeled dynamics. Since a low-

order controller is sought, it was decided to

employ full-state controller design with a reduced-

order plant model. The full-order model is

reserved for evaluation purposes. Order reduction

for the design plant was performed using modal

truncation. Past studies ([6], [7]) have indicated

that a 0.1 rad/sec closed-loop performance band-

width is sufficient to maintain antenna pointing

control, and a design model composed of the rigid

body plus the first three elastic modes in Table I

is adequate to achieve this bandwidth. Higher

bandwidths will typically require the addition of

extra elastic modes to the design model. Denoting

the 12th-order design model transfer matrix by

Gp(S), for a unity-gain feedback compensator with

transfer matrix G (s), multivariable bandwidth will
c

be defined as the frequency below which the

smallest singular value of the closed-loop response
matrix

-I

GcL(s) - Gp(S)Gc(S) [ I + Cp(S)Gc(S ) ]
(8)

remains above unity for s - J_. In our case, we

seek a compensator such that

@[GCL(J_) ] Z 1.0 for 0 _ _ _ 0.I (9)

From the block dlagonal structure of A F in (i), the

transfer matrix, GF(S), of the 26th-order system

may now be written as

GF(S) - Gp(S) + AG(s) (I0)

where AG(s) represents the transfer matrix of the

remaining 14th-order (residual) modal system. In

this form, the dynamics represented by aG(s) can be

interpreted as an "additive perturbation" to the

Gp(S) system and used as an approximate represen-

tation of unmodeled dynamics for use in stability

robustness tests. Specifically, it is established

in [8] that the unmodeled dynamics AG(s) will not

destroy the closed-loop stability so long as

_(Gc(S) [ I + Gp(S)Gc(S ) ]-i } o[AG(s)] S i (ii)

for all s - J_, _ real. Condition (ii) can be

enforced in the compensator design stage to ensure

that closed-loop stability will be preserved for at

least that class of unmodeled dynamics whose

spectral norm lles below _[AC(J_)].
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The spillover effect on &G(s) due to the closed-

loop compensation may be tested directly by

applying a state-variable realization of Gc(S) to

the full 26th-order model given by (I) and (2) and

examining the eigenvalues of the composite system.

A block diagram for the closed-loop configuration

is shown in Figure 3. An approach for constructing

Gc(S) to stabillze Gp(S) while satisfying (9) and

(Ii) is presented in the next section.

which, when used in an LQG fashion with the Kalman

filter from Step I, asymptotically recovers the

frequency response of the target loop gain over the

low-frequency band. The resulting compensator is

given by

Gc(S) - F( sI-_ )'IH (17)

where

F - BTp (18)

ATp + PA - PBBTp + qcTc - 0 (19)

Compensator Design Approach

The compensator design approach employed to meet

the foregoing design objectives can be viewed as a

variation of the well-known Linear-Quadratlc-

Gausslan/Loop-Transfer-Recovery (LQG/LTR) algorithm

([9], [I0]). In the standard I_/LTR approach,

with the loop in Figure 3 broken at the output, a

Kalman filter (GKF) is designed to meet the

complete set of stabillty-performance-robustness

objectives. Thereafter, an optimal linear regu-

lator is constructed such that the composite LQG

compensator (G c) loop gain behavior asymptotically

approaches (recovers) that of GKF in the sense that

Gp(j0)Gc(J_) --_ GKF(JW)

pointwlse in w. Direct application of this LQG/LTR

procedure to large space structures problems

results in extremely conservative designs which

cannot meet reasonable performance specifications

[6]. However, the LQG/LTR structure still provides

a viable approach for model-based controller

synthesis when the standard procedure is modified

in the following manner.

Step 1

Denote a state-varlable realization of Gp(S) by

- Ax + Su (12)

y - Cx (13)

Select the design parameters L and # in the Kalman

filter algorithm

AQ + QA T + LL T - 1 QcTcQ - 0 (14)
#

H - --IQcT (15)

such that

GKF(S ) - C( sI-A )'IH (16)

achieves a desired (target) loop gain for

Gp(S)Gc(S ) over some low-frequency band containing

the design bandwidth.

Step 2

By successively increasing q > 0 in equation (19)

(to follow), design an optimal linear regulator

- A-BF-HC (20)

Step 3

Attempt to adjust q in Step 2 until the desired

bandwidth condition (condition (9)) is met. Also

check stability robustness by (ii). If an exces-

sively high q (indicated by violation of (II)) is

required to achieve the required bandwidth, turn

down the Kalman filter gain (by increasing _ in

(14)) to "loosen" the target loop. In effect, this

procedure reduces the target bandwidth until satis-

faction of (II) is possible. The final design is

accomplished by iteratively adjusting the linear

regulator and Kalman filter design parameters until

an appropriate compromise is made between bandwidth

and stability robustness.

In large space structures applications, the

inability (at Step i) to meet loop gain magnitude

over the desired bandwidth or (in Step 3) the

production of too small a compromise bandwidth can

often be overcome by the inclusion of additional

flexible modes into the design model [6].

If, as in the SCOLE application to follow, an

order-reduction study is performed on the resulting

compensator, the complete set of stability-

performance-robustness conditions needs to be

re-evaluated with the reduced-order compensator.

SCOLE Application

Figure 4 shows the frequency response of the 12th-

order (LQG) compensator, Gc, resulting from an

application of the foregoing procedure to the 12th-

order SCOLE design model, G . The figure indicates
P

a well-behaved lead-lag structure with a 20

db/decade roll-off. Eig_nvalues of the corres-

ponding A-HC, A-BF, and _ matrices are given in

Table II. The frequency response of GCL in equa-

tion (8) with the 26th-order evaluation model used

in place of G is shown in Figure 5. Figure 5
P

demonstrates the satisfaction of the 0.i rad/sec

bandwidth requirement and a 60 db/decade roll-off.

Eigenvalues of the composite system resulting from

the LQG compensator applled to the evaluation model

are given in the first column of Table Ill. The

data indicate that the compensator was designed to

concentrate on stabilizing the rigid body modes

(first three entries of the A-HC block) without

disturbing the stability of the three elastic modes

(last three entries of the A-HC block) of the
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design model. Table III also shows that there is

insignificant sptllover into AG. The stability

robustness test (11) shown in Figure 6 shows more

than 10 db robustness margin.

The possibility of a reduced-order compensator

(ROC) satisfying the design conditions was also

investigated. The methods of balanced realization

[11], Hankel-norm reduction [12] and a method based

on stable factorization [13] were employed. The

ratio of largest to smallest Hankel singular values

was 0.016 so little reduction based on nearly

uncontrollable or unobservable compensator modes

was expected. All of the methods gave similar

results. In each order reduction method, only a

lOth-order ROC would stabilize the design model.

The stable factorization results were Judged to be

(slightly) better and will be discussed herein.

able II shows the eigenvalues o_the corresponding

matrix in the ROC, denoted by _ROC" Figure 7

shows a frequency response of the ROC. A compar-

ison of Figures 4 and 7 shows that the only

difference between the LQG and ROC frequency

response plots is the removal of the dip in o at

the frequency of the third elastic mode. The

importance of this characteristic can be seen from

Figure 8 where the robustness condition (II) is

evaluated using the ROC in place of G c. Figure 8

indicates that an effect of the-order reduction is

,a reduction of stability margin at the frequency of

the third elastic mode. A more positive effect

from the reduced order compensation is seen in the

second column of Table III where the eigenvalues of

the ROC applied to the evaluation model are presen-

ted. The stability of the rlgld-body modes from

the LQG compensator is preserved with the auxiliary

effect of adding stability to the first elastic

mode. The net effect of the ROC is to enhance the

stabilizing effect of the LQG compensator at the

expense of a reduction of stability robustness

margin.

Concludin 5 Remarks

A loop-shaplng procedure similar to that used in

the LQG/LTR approach was used to design a model-

based compensator for the SCOLE configuration, a

generic large space structure configuration

conceived for the purpose of evaluating and

comparing control and identification approaches.

Initially, the inputs of a full 26th-order SCOLE

model were scaled to avoid numerical difficulties.

A 12th-order controller design model was afterwards

constructed from the full-order model using modal

truncation. Applying a modification of the LQG/LTR

technique to the design model produced a 12th-order

model-based compensator satisfying stability-

performance-robustness design conditions. Finally,

an order-reduction technique based on stable

factorlzatlon was used to produce a 10th-order

compensator for controlling the full-order model

without destabilizing spillover effects. It was

noted that order reduction can have beneficial

effects on closed-loop stability but may reduce

stability robustness margins. Since the SCOLE

confiEuration is representative of many proposed

spaceflight experiments, the results and desiEn

techniques employed should potentially be

applicable to a wide range of large space structure

control problems.
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TABLE I

EIGENVALUES OF A E

Mode Elgenvalue*

1

2

3

4

5

6

7

8

9

10

(-0.00524, 1.747)

(-0.00591, 1.970)

(-0.0513, 5.108)

(-0.0224, 7.449)

(-0.0387, 12.903)

(-0.0898, 29.925)

(-0.I04, 34.657)

(-0.232, 77.165)

(-0.243, 80.993)

(-0.446, 148.780)

TABLE II

EIGENVALUE ANALYSIS OF COMPENSATORS

A-HC A-BF _ _OC

(-0.126, 0.126)

(-0.126, 0.126)

(-0.126, 0.126)

(-0.00524, 1.747)

(-0.00591, 1.970)

(-0.0153, 5.108)

(-0.0563, 0.i01)

(-0.0834, 0.0837)

(-0.0959, 0.104)

(-0.178, 1.976)

(-0.905, 1.956)

(-o.418, 5.130)

(-0.420, 5.125) }(-I.O38, 2.027) (-0.776, 1.876)

(-0.203, 1.974) (-0.204, 1.973)

(-0.0489, 0.184) (-0.0500, O.185)

(-0.197, 0.237) (-0.197, 0.237)

(-0.209, 0.210) (-0.209, O.210)

TABLE Ill
,

EIGENVALUES OF FULL-ORDER SYSTEM FORCED

BY LQG AND REDUCED-ORDER COMPENSATORS

A-BF

A-HC

Z_C

LQG ROt

(-0.0569, 0.101)

i(-0.0834, 0.0837)

(-0.0971, 0.103)

i(-0.179, 1.976)

I(-0.905, 1.975)

i(-0.418, 5.130)

1(-o.122, o.128)

(-0.126, 0.126)

(-0.0550, 0.0998)

(-0.0834, 0.0837)

(-0.0960, 0.103)

(-0.181, 1.975)

(-0.634, 1.823)

(-0.122, 0.129)

(-0.126, 0.126)

(-0.126, 0.125)

(-0.00524, 1.747)

(-0.00591, 1.970)

(-0.0153, 5.108)

(-0.0243, 7.449)

!(-0.0383, 12.903)

(-0.0898, 29.926)

(-0.I04, 34.657)

(-0.232, 77.165)

(-0.243, 80.993)

(-0.446, 148.780)

(-0.128, 0.129)

(-0.152, 1.752)

(-0.00603, 1.970)

(-0.0137, 5.109)

(-0.0242, 7.449)

(-0.0383, 12.903)

(-0.0898, 29.259)

(-0.104, 34.657)

_-0.231, 77.165)

(-0.243, 80.992)

(-0.446, 148.780)

Elgenvalues presented in

(Real, + Imaginary) format.
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_A_LYTIC R_Y _ FOR SCOLE

by

Raymond C. Montgomery

Spacecraft Control Branch

_4ASA Langley Research Center

Hampton, VA _5

The objecti_ of this _rk is to develop a practical sensor analytic

redc_dancy management s_heme for flexible spacecraft and to demonstrate

it using the SCO.E experimental apparatus. The particular scheme to be

us_ is taken from preview, s work Gn the Grid apparatus by Willianw and

Montgomery.

Reference:

Williams, J. P. and R. C. Montgomery: Failure Detection and Accommoda-

tion in Structural Dynamics Systems using _alytic RedL_dancy. 24th IEEE

CDC, December Ii-13_ 1985.

OBJECTIVE OF WORK

DEVELOP & TEST A PRACTICAL SENSOR ARM
SCHEME USING SCOLE

APPROACH

USE SCHEME PREVIOUSLY DEVELOPED FOR THE
GRID BY WILLIAMS AND MONTGOMERY



OUTLINE

The presentation is organized as follows: First, the schmmm umed by
Williams and Montgomery is summarized. The scheme is based on a

design which is next described. Experimental results taken _r_m the

SCOLE apparatus on the performance of the Kalman filter of the LDG are

presented and finally plans for completion of the work are given.

OUTLINE

SUMMARIZE THE GRID SCHEME OF WILLIAMS AND
MONTGOMERY

DESCRIPTION OF THE LQG DESIGN FOR THE
SCHEME

RESULTS FROM THE SCOLE LAB EXPERIMENT

PLANS FOR COMPLETION OF THE WORK
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GRID _ SC_ - _J_Y

The approach of Williams and Montgomery was to use a single active

steady state Kalman filter which is d_igned for the estimated failure

state in effect. Lhder the no-failure case the sensor residuals of this

filter should be white with zero mean. The zero-mean character of the

estimated residuals is monitored using Wald's sequential probability
ratio test (SF_T). SFf_T is a binary test to determine if a statistical

variable is zero-mean or has a mean, m. As data samples are gathered

a decision variable is monitored. It is initialized at zero and is

seqt_=ntially mc_ified by the data samples. If it crosses either of t_

decision thresholds a decision is made. [l_e threshold corresponds t_

the zero-mean decision while the other is fox_ t_ _ decision. A

SPRT is run on each residual. If a dtcision _f zero-mDmn is made the

is rwinitlalized and run again, If a m-mean decision is made a

failure is declared. In evlnt of a declared failure the failure

signaturw of the sennors in the residuals are examined to determine the

failure state. A new LDG design for that failur_ state thnn replaces

the current active design.

GRID ARM SCHEME - SUMMARY

USE SINGLE, ON-LINE, KALMAN FILTER

USE SPRT TO CHECK THE ZERO MEAN CHARACTER
OF THE ESTIMATED MEASUREMENT ERROR

IF FAILURE IS DETECTED, ISOLATE USING
FAILURE SIGNATURE IN THE ESTIMATED
MEASUREMENT ERRORS

332



SCOLE _ LQG DESIGN

The basis of the _M to be used is the L_. Therefore the first

order of business is to develop a suitable LQG design wherein the

modelling errors do not defeat the zero-mean character of the residuals.

Most of the rest of the presentation concerns this design and its

performance. For the design model we have used a 5-mode_ modal model of

SCDLE with the SOlE platform fi:o_ed. Thus, there are no rigid body

modes. Also the 5 modes selected are the five iciest frequency modes.

Reaction jets are included in the filter but not in the regulator. The

torque wheels on the other hand are used in both the filter and the

r_gulator.

SCOLE ARM LQG DESIGN

DESIGN MODEL -- MODAL MODEL

FIXED SCOLE PLATFORM MODEL

NO R/DID BODY MODES

5 LOWEST FRF_UENCY VIBRATION MODES

JETS INCLUDED IN FILTER, NOT IN REGULATOR

TORQUE WHEELS USED FOR THE REGULATOR

333



C_l_= IEL_T I CJY

For the experiments repoorted herein and for" the L_'_ design, the

SCO_E platform rested on the groL_d and was considered fixed. We used

the mid-mast and re_lector accelerometers and the rate gyros on the mast

tip. The actuators used were the reaction jets on the reflector and the

torqLe wheeles at the mast tip.

SCOLE CONFIGURATION

SCOLE PLATFORM FIXED

SENSORS --

MID-MAST AND REFLECTOR ACCELEROMETERS

RATE GYROS ON MAST TIP

ACTUATORS --

JETS ON REFLECTOR

TORQUE WHEELS AT MAST TIP

334-



SCOLE M[E_L _ TEST FdZSULTS

The next IO slides are working charts organized in 5 pairs.

They concern the 5 modes of the design model. The first chart oi' each pair

c_ntains the mode shape and frequency. This chart is follc_ed by an

experimental data record taken by manually exciting the structure

at the natllral frequency of the mode and taking free-decay data. The

estimated mode amplitLdes are indicated on the traces.

8RATIONRL MODE, FREO (HZI v=tt26 XlO * 0 0 I0: I./2/]
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FUTL_E PLANS

Tasks that remain to be accomplished are the complete validation of

the Kalm_n filter and regulator for both free-decay and forced res;_nse.

The _ must be tested on this nominal filter design and thresholds

need to be set to avoid false alarms in light of the modelling errors

inherent in the design. Possible so.trees of the modelling errors are

excitation of modes not modelled and higher order and nonlinearities in

the description of the sensors and actuators. The ne>_t step is to

select several failure cases for the _M and generate appropriate LQG

designs for each of these. Then the A_M performance can be evaluated.

Current plans call for this to be completed by mid June 1988. This

schsdule is ambitious and may slip because of NASA revmctoring of

r_BSOLI_gMI °

FUTURE PLANS

VALIDATE NOMINAL KALMAN FILTER

TEST SPRT ON NOMINAL

DESIGN FOR NULL FAILURES OF SENSORS

VALIDATE FAILURE CASE DESIGNS

TEST OVERALL ARM FDI PERFORMANCE

TO BE COMPLETED BY BY MID JUNE '88
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A MATHEMATICAL PROBLEM AND A SPACECRAFT CONTROL LABORAT_ .... _ _ D
EXPERIMENT (SCOLE) USED TO EVALUATE CONTROL LAWS FOR "'-'"I;_
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by
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and
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Chairman, IEEE Subcommittee on Large Space Structures, COLSS

System Sciences Department
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SUMMARY

The problem of controlling large, flexible space systems has been the

subject of considerable research. Many approaches to control system

synthesis have been evaluated using computer simulation. In several cases,

ground experiments have also been used to validate system performance under

more realistic conditions. There remains a need, however, to test

additional control laws for flexible spacecraft and to directly compare

competing design techniques. In this paper an NASA program is discussed

which has been initiated to make direct comparisons of control laws for,

first, a mathematical problem, then an experimental test article is being

assembled under the cognizance of the Spacecraft Control Branch at the NASA

Langley Research Center with the advice and counsel of the IEEE Subcom-

mittee on Large Space Structures. The physical apparatus will consist of a

softly supported dynamic model of an antenna attached to the Shuttle by a

flexible beam. The control objective will include the task of directing

the line-of-sight of the Shuttle/antenna configuration toward a fixed



target, under conditions of noisy data, limited control authority and

random disturbances. The open competition started in the early part

of 1984. Interested researchers are provided information intended to

facilitate the analysis and control synthesis tasks. A workshop is planned

for early December at the NASA Langley Research Center to discuss and

compare results.

INTRODUCTION

Many future spacecraft will be large and consequently quite flexible.

As the size of antennae is increased, the frequencies of the first flex-

Ible modes will decrease and overlap the pointing system bandwidth. It

will no longer be possible to use low gain systems with simple notch

filters to provide the required control performance. Multiple sensors and

actuators, and sophisticated control laws will be necessary to ensure

stability, reliability and the pointing accuracy required for large,

flexible spacecraft.

Control of such spacecraft has been studied with regard given to

modeling, order reduction, fault management, stability and dynamic system

performance. Numerous example applications have been used to demonstrate

specific approaches to pertinent control problems. Both computer simula-

tions and laboratory experiment results have been offered as evidence of

the validity of the approaches to control large, flexible spacecraft.

Concerns remain, however, because of the chronic difficulties in control-

ling these lightly damped large-scale systems. Because of these concerns

and because of the desire to offer a means of comparing technical

approaches directly, an NASA/IEEE Design Challenge is being offered. An



experimental test article is being assembled under the cognizance of the

Spacecraft Control Branch at the NASA Langley Research Center with the

advice and counsel of the IEEE (COLSS) Subcommittee on Large Space

Structures. This Spacecraft Control Laboratory Experiment (SCOLE) will

serve as the focus of a design challenge for the purpose of comparing

directly different approaches to control synthesis, modeling, order

reduction, state estimation and system identification.

The configuration of the SCOLE will represent a large antenna attached

to the Space Shuttle orbiter by a flexible beam, This configuration was

chosen because of its similarity to proposed space flight experiments and

proposed space-based antenna systems. This paper will discuss the "Design

Challenge" in terms of both a mathematical problem and a physical experi-

mental apparatus. The SCOLE program is not part of any flight program.

a

A

c

d

e

E

f

F4

g

GI

I

SYMBOLS

acceleration vector ft/sec 2

beam cross section area

observation matrix

noise contaminating direction cosine matrix measurements

line-of-slght error

modulus of elasticity

concentrated force expressions

force vector

concentrated moment expressions

torsional rigidity

moment of inertia matrix for entire Shuttle/antenna configuration



II

14

i¢

Io

IV

L

MI

_4

MD

m

ml

m4

P

S

T I

%

Vl

v4

u¢

uo

u_

X,Y,Z

A

moment of inertia matrix, Shuttle body

moment of inertia matrix, reflector body

beam cross section moment of inertia, roll bending

beam cross section moment of inertia, pitch bending

beam polar moment of inertia, yaw torsion

length of the reflector mast, beam

control moment applied to the Shuttle body

control moment applied to the reflector body

disturbance moment applied to the Shuttle body

mass of entire Shuttle/antenna configuration

mass of Shuttle body

mass of reflector body

mass density of beam

beam position variable

direction cosine matrix, Shuttle body ()earth ffiTl()Shuttle body

direction cosine matrix, reflector body ()earth ffiT4()reflector

body

inertial velocity, Shuttle body

inertial velocity, reflector body

lateral deflection of beam bending in y-z plane

lateral deflection of beam bending in x-z plane

angular deflection of beam twisting about z axis

position variables

displacement of proof-mass actuator

line-of-slght pointing requirement

noise contaminating angular velocity measurements



e,_,_

to4

pitch, roll, heading

damping ratio

noise contaminating acceleration measurements

angular velocity of Shuttle body

angular velocity of reflector body

DISCUSSION

The objective of the NASA-IEEE Design Challenge concerning the control

of flexible spacecraft is to promote direct comparison of different

approaches to control, state estimation and systems identification. The

design challenge has principal parts, the first using a mathematical model,

and the second using laboratory experimental apparatus. The specific parts

of the Spacecraft Control Laboratory Experiment (SCOLE) program will be

discussed in detail.

Control Objectives

The primary control task is to rapidly slew or change the line-of-

sight of an antenna attached to the space Shuttle orbiter, and to settle or

damp the structural vibrations to the degree requlred for precise pointing

of the antenna. The objective will be to minimize the time required to

slew and settle, until the antenna llne-of-sight remains within the

angle 6. A secondary control task is to change direction during the

"on-target" phase to prepare for the next slew maneuver. The objective is

to change attitude and stabilize as quickly as possible, while keeping the

llne-of-slght error less than 6.



Math Model Dynamics

The initial phase of the design challenge will use a mathematical

model of the Shuttle orblter/antenna configuration. It is necessary to

obtain a balance, of course, between complex formulations which might be

more accurate and simplified formulations which ease the burden of

analysis.

The dynamics are described by a distributed parameter beam equation

with rigid bodies, each having mass and inertia at either end. One body

represents Space Shuttle orbiter; the other body is the antenna reflector.

The equations for the structural dynamics and Shuttle motion are formed by

adding to the rlgld-body equations of motion, beam-bendlng and torsion

equations. The boundary conditions at the ends of the beam contain the

forces and moments of the rigid Shuttle and reflector bodies. The

nonlinear klnetmatlcs couples the otherwise uncoupled beam equations.

Additional terms represent the action of two, 2-axls proof-mass actuators

at locations on the beam chosen by the designer.

The rlgid-body equations of motion for the Shuttle body are given by:

u

:"- lli( III(5+ MI+ MD + )

mI



Similarly, for the reflector body,

_4 = - 141(_'414t°4 + H4 + MB,4)

• F4 + FB_ 4

v4 ffi m4

The direction cosine matrices defining the attitudes of the Shuttle and

reflector bodies are given by:

_ = _ _ T_ITI

T

The direction cosine matrices defining the attitudes of the Shuttle and the

reflector bodies are related to the beam end conditions.

T4

l

where:

'0

0

D

0 0

cosA_ -sinA_

sinA_ cosA¢

cos_O 0 sinAO

0 i 0

-sinA8 0 cosA8

cosA_ -sinA?sinA_ cosA_

0 0
I

0

0 T 1

1

_u@ I _u@ Iae = _--_- _s

s=L s=O

_u¢
A¢ = _s

s=L

8s

s=O



The equations of motion for the flexible beam-llke truss connecting the

reflector and Shuttle bodies consist of standard beam bending and torsion

partial differential equations with energy dlssapatlve terms which enable

damped modes with constant characteristics for fixed, though dynamic, end

conditions. The system of equations can be viewed as driven by changing

end conditions and forces applied at the locations of the proof-mass

actuators.

ROLL BEAM BENDING:

_2u¢ 33u 0 _4u¢

PA 2_ 0 Ptr_'EI 0 _ + EI 0 --=
_t 2 _s2_t _s4

4 _

X [f¢,n_{S-Sn > + g¢,n T_ (S-Sn)]
n= 1

PITCH BEAM BENDING:

a2Uo
PA--"

at 2

_3u 0 _4u 0

2_ 0 /PA EIo-- + EI 0
3s23t 3s 4

4 36

n z [f°'n_{s-sn) + go,n _ <S-Sn)]

YAW BEAM TORSION:

where:

PIv at2
+ 2_v/I_

_3u V

as2at
GI¥ --

_2u V 4
6(s -s )= I g_ ,n n

_s 2 nffil

f0,1 = ml 32u¢ I
8t 2

s=O

{SHUTTLE BODY FORCE}

-a2u¢ tf¢,2 = m2 _t _

s=s 2

+ m2
at 2

{PROOF-MASS ACTUATOR FORCE}



a2u¢

f¢,3 " m3 at2

s = S3

a2A

+ m3 at 2
{PROOF-MASS ACTUATOR}

a2¢ j a2%f0,4 = m4 t2 - I 2a zz,4 at

s=130

/32.5 + F
Y

{REFLECTOR BODY FORCE}

fO,l = ml a2u° jat 2

8=81

{SHUTTLE BODY FORCE}

a2u° J a2Afo,2 = m2 + m2 " -0,2
at 2 at 2

8=S 2

{PROOF-MASS ACTUATOR FORCE}

a2u° J a2A°'2fo,3 = m3 + m3 --at 2 at 2

S=S 3

{PROOF-MASS ACTUATOR FORCE}

a2u° j a2u*fo,4 = m4 - I ,4
at2 zz at2

s-13o

-- /18.75 - F
x {REFLECTOR BODY FORCE}



/g¢'l /
go,l = II_l + _°lIl_°l + MI + MD

g¥,l

{SHUTTLE BODY, MOMENTS}

/g¢,2 /
go,2

g_,2

= 0 {PROOF-MASS ACTUATOR, MOMENT}

/g¢,3 /
go,3

g_,3

= 0 {PROOF-MASS ACTUATOR, MOMENT}

I g_'4 1
g@,4 = 14_4 + W414_4 + M4 + _FB,4

g_,4

{REFLECTOR BODY, MOMENT}

The angular velocity of the reflector body Is related to the Shuttle body

by:

"'4 =

s=L

_2u O

s=L

_u_:1
s=L

_2u_

s=O

_2u O

s=0

8u_:t
s=O

+ .,. RR-_

r
o

-130

O

130 c

0 0

o o

35"7



The line-of-sight error described in figure 2 is affected by both the

pointing error of the Shuttle body and the misalignment of the reflector

due to the deflection of the beam supporting the reflector. The line-of-

sight is defined by a ray from the feed which is reflected at the center of

the reflector. Its direction in the Shuttle body coordinates is given by:

RLO S =

where:

RF

RR

RA

is the feed location (3.75, 0, 0)

is the location of the center of the reflector (18.75, -32.5,

-130)

is a unit vector in the direction of the reflector axis in

Shuttle body coordinates

The vector RA can be related to the direction cosine attitude matrices

for the Shuttle body, TI, and the reflector body, T4, by

The relative alignment of the reflector to the Shuttle body is given by

TTT41 which is a function of the structural deformations of the beam.



The llne-of-sight error,

target direction, given by the unit vector,

direction in Earth axes, TIRLo S.

e ffiARCSIN IDT X TIRLos[

e, is the angular difference between the

DT, and the llne-of-slght

or ARCSIN [DTT 1RLo S[

Computer programs are available which generate time histories of the

rigid body and the mode shapes and frequencies for the body-beam-body

configuration for "pitch" bending, "roll" bending and "yaw" twisting.

Since the modes are based on solving explicitly the distributed parameter

equations (without damping and without kinematic coupling) there is no

limlt to the number of modal characteristic sets that can be generated by

the program. It will be the analyst's decision as to how many modes need

to be considered.

Laboratory Experiment Description

The second part of the design challenge is to validate in the

laboratory, the system performance of the more promising control system

designs of the first part. The experimental apparatus will consist of a

dynamic model of the Space Shuttle orbiter with a large antenna reflector

attached by means of a flexible beam. The dynamic model will be exten-

sively instrumented and will have attached force and moment generating

devices for control and for disturbance generation. A single, flexible

tether will be used to suspend the dynamic model, allowing complete angular

freedom in yaw, and limited freedom in pitch and roll. An inverted

position will be used to let the reflector mast to hang so that gravity

effects on mast bending will be minimized. The dynamics of the laboratory

model will of necessity be different from the mathematical model discussed

earlier.



Design Challenge, Part One

For part one of the design challenge, the following mathematical

problem is addressed. Given the dynamic equations of the Shuttle/antenna

configuration, what control policy minimizes the time to slew to a target

and to stabilize so that the line-of-sight (LOS) error is held, for a time,

within a specified amount, 6. During the time that the LOS error is

within 6, the attitude must change 90 ° to prepare for the next slew

maneuver. This was previously referred to as the sescondary control task.

The maximum moment and force generating capability will be limited. Advan-

tage may be taken of selecting the most suitable initial alignment of the

Shuttle/antenna about its assigned initial RF axis, llne-of-sight.

Random, broad band-pass disturbances will be applied to the configuration.

Two proof-mass, force actuators may be positioned anywhere along the beam.

The design guidelines are summarized below:

I. The initial llne-of-sight error is 20 degrees.

e(o) = 20 degrees

2. The initial target direction is straight down.

3. The initial alignment about the line-of-sight is free to be chosen

by the designer. Advantage may be taken of the low value of

moment of inertia in roll. The Shuttle/antenna is at rest

initially.

4. The objective is to point the line-of-sight of the antenna and

stabilize to within 0.02 degree of the target as quickly as

possible.

= 0.02 degree



. Control moments can be applied at I00 Hz sampling rate to both the

Shuttle and reflector bodies of I0,000 ft-lb for each axis. The

commanded moment for each axis is limited to I0,000 It-lb. The

actual control moment's response to the commanded value is

first-order with a time constant of 0.1 second.

For the rolling moment applied to the Shuttle body:

--104 _ MX,l,comman d _ 104

-o. 1 -o. 1 ) (n)
MX,I(n + I) = e MX,I(n) + (I - e Mx,l,comman d

.

Equations for other axes and for the reflector body are similar.

Control forces can be applied at the center of the reflector in

the X and Y directions only. The commanded force in a

particular direction is limited to 800 ibs. The actual control

force's response to the commanded value is flrst-order with a

response time of 0.I second.

For the side for applied to the reflector body:

1

-800 _ Fy,comman d _ 800

Fy(n + 1) = e -0"1Fy(n) + (1 - e -0"1) F Y,command(n)

Equations for X-axis are similar.

Control forces using two proof-mass actuators (each having both

X and Y axes) can be applied at two points on the beam. The

strokes are limited to ± 1 It, and the masses weight 10 lbs each.

The actual stroke follows a first-order response to limited

commanded values.



For the X-axls of the proof-mass actuator at s2:

So

-1 < AX,2,comman d < 1

AX,2(n + I) = e-0"I AX,2(n) + (I - e-0"I ) AX,2,command(n)

Equations for other axes and locations are similar.

The inertial attitude dlreclton cosine matrix for the Shuttle body

lags In tlme the actual values by 0.01 second and are made at a

rate of I00 samples per second. Each element of the direction

cosine measurement matarix is contaminated by additive,

uncorrelated Gaussian noise having an rms value of 0.001. The

noise has zero mean.

where:

Ts,measured(n + I) = Ts,true (n) +

E{dij(n) } = 0

E{dij(n)dkL(n)} = 0

E{dij(n)dij(n + k)} = 0

= [.ool]

L

dll(n) dl2(n) dl3(n)

d21(n) d22(n) d23(n)

d31(n) d32(n) d33(n)

for i ¢ k or j _ L

for k ¢ 0

for k = 0



9. The angular velocity measurements for both the Shuttle and

reflector bodies pass through a flrst-order filter with 0.05 sec

time constant and lag in time the actual values by 0.01 second and

are made at a rate of I00 samples per second. Each rate

measurement is contaminated by addltlve, Gaussian, uncorrelated

noise having an rms value of 0.02 degree per second. The noise

has zero mean.

For example:

where

_l,X,measured(n + 1) - wl,X,filtered(n) + el,X(n )

E{Ci,x(n) ,X (n + k)} = 0 for k _ 0

" (.02) 2 for k = 0

_l,X,filtered " - 20 _l,X,filtered + 20 wl,X,true

I0. Three-axis accelerometers are located on the Shuttle body at the

base of the mast and on the reflector body at its center. Two-

axes (X and Y) accelerometers are located at intervals of

I0 feet along the mast. The acceleration measurements pass

through a flrst-order filter with a 0.05 second time constant and

lag in time the actual values by 0.01 second, and are made at a

rate of I00 samples per second. Each measurement is contaminated

by Gaussian additive, uncorrelated noise having an rms value of

0.05 ft/sec 2.



For example :

where:

al,x,measured(n + 1) = al,x,filtered

E{ I,X(n)TI,x(n+ k)} = 0

= (.05)2

_l,X,filtered = - 20 _l,X,filtered

(n) + zl,X(n)

for k * 0

for k = 0

+ 20 _l,X,true

II. Gaussian, uncorrelated step-like disturbances are applied

I00 times per second to the Shuttle body in the form of 3-axes

moments, having rms values of I00 ft-lbs. These disturbances

have zero mean.

For example:

E{MD,x(n) MD,X(n + k)} = 0
for k * 0

= (100) 2 for k = 0

In summary, the designer's task for part one is to: (I) derive a

control law for slewing and stabilization, coded in FORTRAN; (2) select an

initial attitude in preparation for slewing 20 degrees; and (3) select two

positions for the 2-axes proof-mass actuators. An official system

performance assessment computer program will be used to establish the time

required to slew and stabilize the Shuttle/antenna configuration.

!



Design Challenge, Part Two

As in part one, the task is to minimize the time to slew and stabilize

a Shuttle/antenna configuration. The difference is that in part two of the

design challenge, a physical laboratory model will be used instead of the

dynamic equations of part one. The constraints on total moment and force

generation capability will apply to part two, as for part one. Again, the

analyst may select the initial alignment about the assigned initial RF

line-of-sight. Disturbances will be injected into the Shuttle/antenna

model. The designer's task will be similar to that for part one.

CONCLUDING REMARKS

A Design Challenge, in two parts, has been offered for the purpose of

comparing directly different approach to controlling a flexible

Shuttle/antenna configuration. The first part of the design challenge uses

only mathematical equations of the vehicle dynamics; the second part uses a

physical laboratory model of the same configuration. The Spacecraft

Control Laboratory Experiment (SCOLE) program is being conducted under the

cognizance of the Spacecraft Control Branch at the NASA Langley Research

Center. The NASA/IEEE Design Challenge has the advice and counsel of the

IEEE-COLSS Subcommittee on Large Space Structures. Workshops will be held

to enable investigators to compare results of their research.
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The moment of inertia becomes:

I l

I

14 -

I -I
xx xy

-I I
xy yy

-I -I
xz yz

m

905,443

-I
xz

-I =

yz

I
zz

6,789,100

-145,393

4,969

0

0

0 4,969

0 0

m = 6391.30 slugs

ml= 6366.46 slugs

m2= 0.3108 slugs

m3= 0.3108 slugs

m4= 12.42 slugs

1,132,508

7,555

- 115,202

u

-145,393

0

7,086,601

0

0

9,938

7,555

7,007,447

- 52,293

u

- 115,202

- 52,293

7,113,962

PA = 0.09556 slugs/ft

EI¢ ffi 4.0 x 107 Ib -ft2

= .003
¢

PA

El o

_0

ffi 0.09556 slugs/ft

ffi 4.0 x 107 Ib-ft 2

= .003

Pi_

GI_

= 0.9089 slug-ft

= 4.0 x 107 Ib-tt 2

= .003



Figure i. Drawing of the Shuttle/Antenna Configuration.
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Figure 2.- Schematic of the ef{ect of bending on the

line-of-slght pointing error.
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Roll bending mode _ I.

jt

Frequency= .32 Hz

Roll bending mode # 2. Frequency= 1.2g Ht

Roll bending mode H 3. Frequency= &80 Hz

::r

Roll bending mode # 4. Frequency= 12.2g Hz

Roll bending mode # 5. Frequency= 23.68 Hz

Roll bending mode # 6. Frequency= 38.89 Hz

e_

Roll bending mode # 7. Frequency= 57.90 Hz

Roll bending mode # 8. Frequency= 80.72 Hz

Figure 4a.- ['lots of wlormaltzed rolt bending modt, .qhal,,S

for SCOLE configuration.
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Pitch bending mode # 1.

J f_t

_ fJ

Frequency= .29 Hz

Frequency= 1.65 HzPitch bending mode # 2.

Pitch bending mode # 3. Frequenc'/= 4.97 Hz

Pitch bending mode # 4. Frequency= 12.36 Hz

i

d

N

Pitch bending mode # 5. Frequency= 23.72 Hz

Pitch bending mode # 6. Frequeno/= 38.91 Hz

Pitch bending mode # 7. Frequency= 57.92 Hz

_-.q3

Pitch bending mode # 8. Frequency= 80.73 Hz

Figure 4b.- Plots of normalized pitch bending mode shapes

for SCOLE configuration.
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I;-.0,L
Tordonal mode # I. Frequency- .53 Hz

Torsional mode # 2. Frequenc-/= 45.12 Hz

Torsional mode # 3. Frequency= 90.23 Hz

Torfional mode # 4. Frequency= 135.35 Hz

Torfional mode _ 5. Frequency= 180.46 Hz

W

Torsional mode # 6. _.requency= 225.57 Hz

Tordon_l mode # 7. Frequenc'/= 270.69 Hz

\J \
Torsional mode # 8. Frequency-- 315.80 Hz

Figure 4c.- Plots of normalized torsional mode shapes for

SCOLE configuration.
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Summary of Selected Papers

by

Lawrence W. Taylor
NASA Langley Research Center

plU_n_ l_u3S _K _



CONTROL DESIGN CHALLENGES of LARGE SPACE SYSTEMS and

SPACECRAFt CONTROL LABORATORY EXPERIMENT (SCOLE)

Gene Lin of Control Research Corporation

Examines the Resulting Excitation due to Bang-Bang Slewing

Effect of Excitation on Line-of-Sight Error

Concept of Modal Dashpots

Examines the Resulting Excitation Employing Modal Dashpot Design

Examines Linear Velocity Feedback Force Control (Also Angular)

Computer Simulation

...........................................................................

Needs te, be Applied to SCOLE Experimental Apparatus



INITIAL TEST RESULTS on STATE ESTIMATION on the SCOLE MAST

Dean Sparks of NASA Langley Research Center

Modal State Estimation Tested on SCOLE (Fixed Shuttle Body)

Kalman Filter used for State Estimation

Six Linear Accelerometers and 3-Axis Rate Gyro

Large Discrepencies Between Linear Finite Element Model and

Experiment

Sinusoidal Input Forcing Function

Gravity Effects Very Pronounced

A Large Number of Modes Required for Accurate Static Deflection

Nonlinear Kinematics Can Be Significant
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The DYNAMICS and CONTROL of the IN-ORBIT SCOLE CONFIGURATION

MINIMUM TIME ATTITUDE SLEWING MANEUVERS of a RIGID

SPACECRAFT

STABILITY ANALYSIS of LARGE SPACE STRUCTURE CONTROL SYSTEMS

with DELAYED INPUT

Peter Bainum, A.S.S.R. Reddy, Cheick M. Diarra and Feiyue Li of Howard

University

Examines the Changes in Modal Characteristic due to Orbital Motion

Linear Elasticity Assumed

Retain Nonrotating Mode Shapes

Examines Stability for Rigid Case with Increasing Complexity

Derives Control Law using Linear, Flexible (4 Modes) SCOLE

Computer Simulations

Need to Introduce Disturbances, Noise

Need to Apply to Experimental Apparatus



CONTROL DESIGN APPROCHES for LaRC EXPERIMENTS

Steve Yurkovich and Umit Ozguner of Ohio State University

LQG, MEOP

Computer Simulations

Model Reference Adaptive Control

Employ Hyperstability and Positivity Concepts

Combine with Parameter Identification

Computer Simulations

...........................................................................

Noise and Parameter Uncertainity Models Not Necessarily Realistic

Need to Apply to Experimental Apparatus
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SOME NONLINEAR DAMPING MODELS in FLEXIBLE STRUCTURES

A. V. Balakrishnan of UCLA

Nonlinear Damping Term ie Ixlaldx/dtlbdx/dt

Uses Krylov and Bogoliubov Approximation

"Solves" Equations for SCOLE Bending and Torsion

Examines Multivariable Case

Draws Analogy with Nonlinear, Boundary Feedback Control

...........................................................................

Useful Results for Modeling Nonlinear Damping

Useful for Systems Identification

Experimental Evidence Supports Findings

Need Approximations for Modal Model
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SOME NONLINEAR DAMPING MODELS in FLEXIBLE STRUCTURES

A. V. Balakrishnan of UCLA

Nonlinear Damping Term ie Ixlaldx/dtlbdx/dt

Uses Krylov and Bogoliubov Approximation

"Solves" Equations for SCOLE Bending and Torsion

Examines Multivariable Case

Draws Analogy with Nonlinear, Boundary Feedback Control

...........................................................................

Useful Results for Modeling Nonlinear Damping

Useful for Systems Identification

Experimental Evidence Supports Findings

Need Approximations for Modal Model



INFINITE-DIMENSIONAL APPROACH to SYSTEMS IDENTIFICATION

of SPACECONTROL LABORATORY EXPERIMENT (SCOLE)

S. A. Hossain and K. Y. Lee of Penn State University

Retains Physical Parameters ie Coefficients in P.D.E.s

Truncation problem avoided

Weighted Least Squares

Computer Simulations for a Few Different Examples

Convergent after Several Iterations
...........................................................................

Additive Noise Used is Not Particularly Realistic

Good to tie-in to Physical Parameters



OPTIMIZATION-BASED DESIGN of CONTROL SYSTEMS for FLEXIBLE
STRUCTURES

E. Polak, T. Baker, T-L. Wuu and Y-P. Ham of University of California at
Berkeley

Approach is to Use "Nonsmooth Optimization Algorithms"

Design Closed-Loop Finite Dimensional Compensators for Flexible
Str uct ure s

Does Not Require Modal Decomposition, Avoiding Spillover Problem

Applicable to Mixed Ordinary and P.D.E. Systems

Classical Design Objectives

Applied to Flexible Beam with Tip Mass

Computer Simulation

...........................................................................

Need to Test with Disturbances, Noise



PLACING DYNAMIC SENSORSand ACTUATORS onFLEXIBLE SPACE
STRU_S

Gregory Norris and Robert Skelton of Purdue University

Input/Output Cost Analysis Decomposes the Quadratic Cost into
Contributions from Each Stochastic Input and Weighted Output.

Closed Loop is Considered

Past Treatment Required Perfect Sensors and Actuators

Now Consider Dynamics of Sensors and Actuators

Applied to SCOLE

...........................................................................

Important to Consider Closed Loop and Dynamics of Elements

Order Reduction is an Important Problem
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COMBINED PROBLEM of SLEW MANEUVER CONTROL and VIBRATION

SUPPRESSION

Y. P. Kakad of University of North Carolina at Charlotte

Derives the Nonlinear Equations of Motion Suitable for Slewing and
Vibration Control

Analyzes the Kinematic Nonlinearities in terms of the Matrix Spectral
Norm

Analyzes Arbitrary Slew Maneuver

It May be Necessary to Synthesize Control Systems for the Combined
Problem

Interesting Approach

Determining "Optimal" Control Might be Difficult



EFFECT of ACTUATOR DYNAMICS on CONTROL of BEAM FLEXURE DURING

NONLINEAR SLEW of SCOLE MODEL

Shalom (Mike) Fisher of Naval Research Laboratory

Simulation Includes Limited Proof-Mass Deflection and Time Delay

Examines Line-of-Sight Errors due to Slewing and Settling

NASTRAN Finite Element Model (12 Vibrational Modes)

Nonlinear DISCOS Simulation of 20' Slew

LQR Design

Force Limit

Computer Simulation

...........................................................................

Ready for Experimental Apparatus



COMPUTATIONAL EXPERIMENTS in the OPTIMAL SLEWING of FLEXIBLE

STRUCTURES

T. E. Baker and E. Polak

Considers the "Swinging Flexible Arm Problem"

45 Degree Rotation

Torque Limit

Minimizes Total Energy Required for Time Limit

Same with Upper Bound on Potential (Elastic) Energy

Computer Simulation

Need to Consider Disturbances, Noise
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PARAMETER IDENTIFICATION USING MODAL DATA

L. Meirovitch and M. A. Norris of V.P.I.

Uses Indirect Method ie Modal "Data" not Sensor Data

Rayleigh-Ritz method

Iterative, Sensitivity Analysis

SCOLE Laboratory Experiment Application

4 Degree-of-Freedom Model

Estimated EI, I(Antenna)
...........................................................................

Work at early stage.

Important coupling not yet included.



NONLINEARITIES in SPACECRAFT STRUCTURAL DYNAMICS

Lawrence W. Taylor and Kelly Latimer of NASA Langley Research
Center

Many Modes are Needed for Accurate Static and Dynamic Characteristics

Large Amplitude Deflection Effects are Examined

Lumped Mass and Assymptotic Approximations are Evaluated

A 3-Dimensional Beam Equation is Derived for Large Deflections

Linear and Nonlinear Damping Models are Examined

Distributed Parameter Models are Seen To Reduce the Number of

Parameters

...........................................................................

The Dynamic Model of the SCOLE Experimental Apparatus Needs to be

Improved

Effort is Needed in Solving the 3-Dimensional Beam Equation

The Nonlinear Damping Seen in the SCOLE is Probably Due to

Aerodynamics



ANALYTICAL REDUNDANCY MANAGEMENT for SCOLE

Ray Montgomery of NASA Langley Research Center

Examines Problem of Control Performance when Elements are Failed

Uses Expected Quadratic Performance Index

Combinatorial Problem forces Cut and Try

............................................................................

Important Consideration for Some Applications with Long Life/MTBF
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